The entire content of the FS-SCS website is protected by copyright (including scientific terminology). Please quote accordingly, if you use content or terms from these pages. © DESY Photon Science
With different photon-based technologies we investigate energy conversion processes and structural changes of molecules during chemical reactions. Precisely, we study the reacting molecules' time-dependent electronic and spatial behavior during chemical reactions. Utilizing the specific properties of brilliant X-ray sources like synchrotrons or Free-electron lasers, we develop so-called "molecular movie methods" in the time-resolved and ultrafast X-ray field which include various types of ultrafast X-ray spectroscopy as well as high-resolution ultrafast X-ray diffraction and scattering techniques.
The website is currently shared between two workgroups – FS-BIG (Prof. S. Bari), concentrating on the study of organic gas phase reactions and the dynamics of biomolecules, and FS-SCS (Prof. S. Techert), focusing on the study of soft matter reactions in the condensed phase (liquid, solid).
FS-SCS: From Structural to Topological to Functional Dynamics in Chemical Reactions
Responsible: Krishnayan Basuroy, Jose Velazquez Garcia, Simone Techert
Method Developments: Ultrafast X-ray Crystallography (high resolution, ordered systems), Ultrafast X-ray Scattering (disordered systems), Generalised Descriptions, Pump / Probe Set-ups, Sample Delivery Units (Liquid Jets for Free Electron Laser Research, Nanoliter Compartments, etc.), In-situ Ultrafast Transient Optical Spectroscopy, High-Throughput and In-situ Chemical Synthesis for Free Electron Laser Characterisation, Opto-Electronic Devise Development, Protein Dynamics for Device Applications
Soft Matter Systems and Reactions under Investigation: Investigation of intra-molecular charge transfer geometry in Pyrene-Bridge-Dimethylaniline dyad crystals, exploration of the dynamics of multi-stimuli responsiveness, observed in the dyad crystals, with time-resolved pump-probe photocrystallography and high-pressure crystallography, exploration of amino-acid based nano-structures such as nanotubes/nanochannels under thermally induced structural changes, the study of intrinsically disordered proteins (IDPs) in the context of the permeability barrier of nuclear pore complexes (NPCs) that controls all exchange of macromolecules between the cytoplasm and the cell nucleus, investigation of hydrogel formation by IDPs and their constituent FG containing peptide fragments, MOFs etc.
FS-SCS: Electronic Changes in Chemical Reactions: Local to Global Dynamics
Responsible: Sreeju Sreekantan Nair Lalithambika, Simone Techert
Method Developments: X-ray Photon-in / Photon-out Techniques, Ultrafast Multidimensional Soft X-ray Spectroscopy (Ultrafast Soft X-ray Absorption Spectroscopy, Ultrafast Soft X-ray Emission Spectroscopy, Ultrafast Resonant Inelastic X-ray Scattering), Pump/Probe Setups, Liquid Jet Endstation (LCLS), HeisenbergRIXS (@SCS/EuropeanXFEL), In-situ and Operando Techniques Combined with Pump / Probe Setups
Soft Matter Systems and Reactions under Investigation: Water splitting reaction etc.
FS-BIG: Structure and Dynamics of Gas-Phase Biomolecules
Responsible: Lucas Schwob, Sadia Bari (please contact Sadia.Bari@desy.de and Lucas.Schwob@desy.de directly)
Method Developments: Ultrafast X-ray Mass Spectrometry, Ultrafast X-ray Circular Dichroic Absorption and Mass Spectrometry, Electrospray Sources for Free Electron Laser Research
Electrospray ionization (ESI) is a gentle, state-of-the-art technique to introduce biomolecular ions from solution into the gas phase and into vacuum, providing a solvent- and substrate-free environment. This allows studying the molecule in a well-defined, isolated state, where only intramolecular interactions have to be considered for describing structure and dynamics. The combination of an ESI source with advanced light sources such as synchrotrons, free-electron lasers and high harmonic generation sources allows for a novel and unique way to investigate structure and dynamics of gas-phase biomolecules. In particular, synchrotron and free-electron laser sources have the great advantage of superior photon brilliance, a wide photon energy range as well as polarization tunability. This enables systematic studies of energy and polarization dependent effects of ionization and dissociation processes.
The following fundamental scientific complexes are targeted within this group:
(i) Circular dichroism: Homochiral molecules have different absorption efficiencies for right or left circularly polarized light, the so-called circular dichroism (CD). Many CD studies aimed at discovering structural information on amino acids, proteins and DNA (building blocks) have been performed in the ultra-violet (UV) spectral region, but only a few CD studies enter the X-ray spectral range, where despite a very localized excitation, strong CD was observed. This local, site-selective probing with an X-ray pulse does not average the signal over the whole molecule, as is the case in the UV-visible absorption, and hence is a more selective tool to investigate structure-dependent dynamics in the molecule.
(ii) Radiation damage: Radiation therapy relies on ionizing radiation, yet, there is no consistent knowledge of the exact cascade of processes leading to radiation damage in a cell on atomic length and time scales. It is important to understand the details in the mechanisms of radiosensitizers, to increase the impact on tumors and to find non-toxic alternatives. To study the ultrafast processes of radiation damage on the molecular level, photoionization and photodissociation experiments are performed on gas-phase nucleobases, amino acids, oligonucleotides and peptides. These molecules will be explored in the pure as well as nanosolvated form. Moreover, metal ligands as well as radiosensitizers like cisplatin attached to oligonucleotides will be studied.
(iii) Ultrafast charge migration: Ultrafast charge transfer is believed to play an important role in biological energy conversion processes, such as light harvesting processes in plants. Pump-probe experiments of peptides will be performed to understand the fast charge migration processes in detail in terms of size, structure and time.
One example of a merge of complementary techniques is the combination of high flux and high energy resolution X-ray spectroscopy with electro spray ionization and mass spectrometry.
Since the absorption of X-ray photons is element specific and selective towards its chemical environment, tuning the X-ray excitations with defined photon properties allows to collect ionization and chemical fragmentation pattern generated in an initial step of “electron time clocking” on this internal femtosecond X-ray clock. Consequently, the chemical fragments are defined through the characteristics of the X-ray excitation. The combination of X-ray spectroscopy with mass spectrometric tools allows for the precise determination of the experimental energies of occupied and low lying non-occupied molecular orbitals of complex molecules (polyaromatic systems, nucleotides,amino acids, peptides, proteins). In comparison, optical spectroscopy in the VIS und UV regime delivers relative transition energies. Therefore it is possible to determine with extremely high precision experimentally binding energies and characterize ionization processes during ion and radical formation or hydrogen bonding processes. The recorded, corresponding decomposition pattern include – again – chemical analytical information typical for mass spectrometry – simply precisely connected to the initial orbitals of biomolecules from which the journey of chemical decomposition starts. Such correlations deliver additional puzzle pieces in determining time stamps of biochemical reactions in structural features of the relevant molecules.
FS-BIG: Ultrafast Imaging of Gas-Phase Reactions
Responsible: Lucas Schwob, Sadia Bari (please contact Sadia.Bari@desy.de and Lucas.Schwob@desy.de directly)
Method Developments: Ultrafast X-ray Photoelectron Spectroscopy, Ultrafast X-ray Photoelectron Imaging, Ultrafast X-ray Coulomb Explosion Imaging, Adds-on to CAMP (FLASH)
Investigating chemical reaction dynamics on the fundamental level, watching the making and breaking of chemical bonds in real time, or recording a “molecular movie” has been a longstanding dream in physical chemistry. Directly imaging the motion of single atoms in space and time is very challenging though, due to the molecular dimensions (~1Å) and the reaction time scales (~1-100fs). The advent of X-ray free-electron lasers that provide very short and very intense X-ray pulses has brought this dream a little closer to reality. Our research activities focus on investigating ultrafast molecular dynamics of gas-phase molecules, studied at accelerator-based lightsources.
Molecular physics and photochemistry are omnipresent in everyday life: light-emitting diodes, photovoltaics, biosynthesis of vitamin D, UV-resistance of DNA, and many other processes are based on photochemical principles. However, some of the very fundamental reactions such as electrocyclic ring opening are not yet fully understood on the atomic level. If we can gain the necessary insight to understand, and eventually maybe even to control the outcome of such photochemical reactions, this would open the door to develop more efficient solar cells, to highly innovative medical applications, and many more. The investigation of such ultrafast processes in molecules with optical spectroscopy is referred to as femtochemistry, for which the Nobel Prize in chemistry was awarded to Ahmed Zewail in 1999.
Directly imaging the motion of single atoms in space and time is very challenging though, due to the molecular dimensions and the reaction time scales. The typical bond distance between two atoms in a molecule is on the order of 1 Ångström (1 Å = 10-10 m) and rearrangement of atoms can happen on a time scale faster than 100 femtoseconds (1fs = 10-15 s). Our goal is to develop methods capable of imaging ultrafast processes on the atomic length and time scales in isolated molecules, in particular using ion momentum and electron spectroscopy following X-ray absorption. We approach this by starting with isolated atoms and then gradually turn towards larger molecules. Our main focus lies on time-resolved experiments employing electron and or ion momentum spectroscopy (figure right side).
The advent of X-ray free-electron lasers such as FLASH and the European XFEL at DESY in Hamburg, the LCLS in California, and SACLA in Japan, brought forward unprecedented possibilities to study dynamical processes in the gas phase. The very short and very intense X-ray pulses made it possible, for the first time, to probe ultrafast photo-induced molecular dynamics following multiple, element-specific inner-shell absorption. Such X-ray pulses can remove many electrons from one specific atom in a larger molecule, thus generating a very high, localized charge. This charge can then spread to the molecular environment within a very short time. Charge transfer mechanisms play an important role in a variety of systems, and they lie at the heart of radiation damage processes that have been shown to occur in bioimaging experiments employing very intense X-ray radiation. Even in astrophysics, X-rays produced by charge transfer processes have been observed.
In order to record a “movie” of the molecular dynamics, the same measurement has to be repeated many times, yielding different snapshots of the atomic motion; this is called a pump-probe experiment. Through photoabsorption, it is possible to promote a molecule to a specific excited state. For example, the schematic potential energy curves (PECs) of fluoromethane (CH3F) and iodomethane (CH3I) illustrate that the different halogen species give rise to qualitatively different PECs. Absorption of one ultraviolet photon in CH3I leads to a repulsive neutral state, whereas multi-photon UV absorption in CH3F populates several higher-lying ionic states. After a tunable time delay, an intense X-ray pulse probes the dissociating system by ionizing predominantly the iodine (3d) or the fluorine (1s) level, respectively, because of their large absorption cross sections, resulting in a localized positive charge on the halogen. If the halogen atom is already ionized, the high charge stays on this atom and the rest of the molecule remains neutral. As long as the two fragments are close to each other, the charge can spread over to the other atoms. It is this transition from a bound molecule to isolated atoms that we probe by time-resolved ion spectroscopy. The recorded ions can be used to extract the critical internuclear distance, up to which electron transfer from methyl to iodine is possible. We have observed signatures of long-distance intramolecular electron transfer (up to 15 Å for I21+), which is, among others, highly relevant for radiation damage in imaging experiments involving heavy atomic species.
References
Filming chemical reactions in real time and the “local to global” approach utilizing ultrafast high flux X-ray sources
[1] S. Techert, F. Schotte, M. Wulff, Picosecond x-ray diffraction probed transient structural changes in organic solids, Phys. Rev. Lett. 86, 2030-2034 (2001).
[2] S. Bari, R. Boll, S. E. Canton, L. Glaser, K. Idzik, K. Kubicek, D. Raiser, S. Thekku Veedu, Z. Yin, S. Techert, High flux X-ray sources and Free Electron Lasers for studying ultrafast time structure imprints in complex chemical and biochemical reactions, in: X-ray Free Electron Lasers, eds. U. Bergmann, P. Pellegrini, Oxford University Press, in press (2016) and references therein.
[3] Z. Yin et al., Probing the Hofmeister effect with ultra-fast core-hole spectroscopy, J. Phys. Chem. B 118 (31), 9398-9403 (2014).
[4] S. Schreck et al. Reabsorption of soft x-ray emission at high x-ray free-electron laser fluences, Phys. Rev. Lett. 113 (15), 153002 (2014).
[5] R. Boll et al., Imaging molecular structure through femtosecond photoelectron diffraction on spatially aligned and oriented gas-phase molecules, Faraday Discuss. 171, 1–24 (2014).
[6] P. Wernet et al., Orbital-specific mapping of the ligand exchange dynamics of Fe(CO)5 in solution, Nature 520 (7545), 78-81 (2015).
[7] W. Zhang et al., K. Kubicek et al., Tracking excited state charge and spin dynamics in iron coordination complexes, Nature 509 (7500), 345-8 (2014).
[8] S. E. Canton et al., Visualizing the non-equilibrium dynamics of photoinduced intramolecular electron transfer with femtosecond X-ray pulses, Nat. Comm. 6 (3), 6359-6362 (2015).
[9] I. Rajkovic et al., Diffraction properties of periodic lattices under free electron laser radiation, Phys. Rev. Lett. 104, 125503-6 (2010).
From Structural to Functional Dynamics.
[10] S. Thekku Veedu et al., Ultrafast dynamical study of pyrene-N,N-dimethylaniline as an organic molecular diode in solid state, J. Phys. Chem. B 118 (12), 3291 - 3297 (2014).
[11] S. Mildner et al., Temperature and doping dependent optical absorption in the small polaron system Pr1-xCaxMnO3, Phys. Rev. B 92 (3), 35145-35148 (2015).
[12] D. Raiser et al., Evolution of hot polaron states with ns lifetime in a manganite, submitted (2016).
[13] K. R. Idzik et al., The optical properties and quantum chemical calculations of thienyl and furyl derivatives of pyrene, Phys. Chem. Chem. Phys., 17 (35), 22758-22769 (2015).
[14] M. Petri, private communication (2016) and http://www.armacell-core foams.com/www/armacell/INETArmacell.nsf/standard/ DC2C5D13EA92BD46802576E200526C26.
[15] C. Kupitz et al., S. Bari et al., Serial time-resolved crystallography of photosystem II using a femtosecond X-ray laser, Nature 513 (7417), 261-265 (2014).
From Structural to Topological Dynamics.
[16] E. Ferrari et al., L. Glaser et al., Single shot polarization characterization of XUV FEL pulses from crossed polarized undulators, Nat. Sci Rep. 5, 13531-4 (2015).
[17] Z. Yin et al., Experimental setup for high resolution X-ray spectroscopy of solids and liquid samples, Proc. SPIE 8849, X-Ray Lasers and Coherent X-Ray Sources: Development and Applications X, 88490I (2013).
[18] J. Schulz, S. Bari et al., Sample refreshment schemes for high repetition rate FEL experiments, Proc. SPIE 8778, Advances in X-Ray Free Electron Lasers II: Instrumentation, 87780T (2013).
[19] O. González-Magaña et al., S. Bari et al., Fragmentation of protonated oligonucleotides by energetic photons and Cq+ ions, Phys. Rev. A 87 (3), 032702-12 (2013).
[20] S. MacLot et al., S. Bari et al., Ion-induced fragmentation of amino acids: effect of the environment, Chem. Phys. Chem. 12 (5), 930-936 (2011).
[21] R. Jain, S. Techert, Time-resolved and in-situ X-ray scattering methods beyond photoactivation: utilizing high-flux X-ray sources for the study of ubiquitious non-photon active proteins, Special Issue: “Synchrotron Applications in Life Sciences”, Prot. Pept. Lett. 23 (999), 01-08 (2016) and references therein.
Considering the group’s name, one may believe that the FS-SCS group consists of chemists only. But this is not the case. Our group members are not only chemists, but also physicists and biologists. Therefore, our group’s name shouldrather be Structural Dynamics in Biophysical Chemistry. Currently, we even have more physicists than any other scientists. Personally, we really like this fact because due to these different scientific fields within our group, we never stay focused on one particular research area. This fact makes an inspiring, stimulating and creative exchange of ideas possible, often leading to great new scientific findings.
How does this scientific diversity work?
Within the field of physics, we develop instrumentation for high flux X-ray sources which are necessary for further research, precisely for the investigation of structural dynamics of complex chemical systems which then, eventually, may lead to an optimization of functional dynamics in not only chemical but also biological systems. So for example, the X-ray spectroscopy of molecular switches makes it possible to measure the molecules’ change of structure as a function of time, leading to an optimization of their structure for fast time response = 0 and therefore, generating new possibilities in the field of optical switches.