Experience with Data Analysis Programs: DAWN, DPDAK and Mantid

Gero Flucke

FS-EC

PETRA III Commissioning Meeting April 2nd, 2014

Gero Flucke (DESY)

Comparison of Data Analysis Programs

2.4.2014 1 / 58

Outline

- Introduction
- Overview of Analysis Programs:
 - DAWN
 - DPDAK
 - Mantid
- Summary

三日 のへの

Introduction

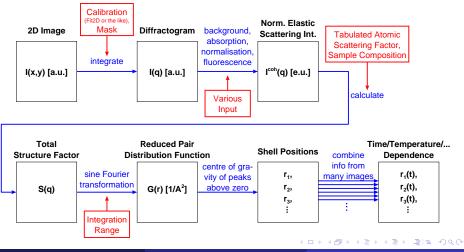
• Data rates in modern X-ray experiments are rising.

 \Rightarrow Raw data might not be "exportable" to users' institutes.

- Groups with little X-ray physics background less experienced with "standard" data analysis.
- Standardisation of data format envisaged: NeXus.
- How to react at DESY?
 - ⇒ Provide central data processing?
 - ⇒ Provide "standard" data analysis tools?

 \Rightarrow Investigate existing analysis tools!

Note: Within the framework of the Photon and Neutron data infrastructure initiative. http://pan-data.eu


Investigation of Analysis Programs

- Candidates: DAWN, DPDAK, Mantid.
- See what the programs provide,
 - but need analysis guidance,
 - ⇒ example scenario: Real space analysis of amorphous material,
 - thanks to J. Bednarcik (P02.1) for data and beam time!
- All programs share Python as analysis scripting language:
 - ⇒ write/(re)use tool independent code base in all programs!
- Notes:
 - My physics background is outside X-ray analysis, being familiar with ROOT (http://root.cern.ch) for analysis,
 - I spent more time on DAWN than on the other programs.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Real Space Analysis of Amorphous Material

- Changing conditions: temperature, pressure,...
- Capable of online monitoring.

Gero Flucke (DESY)

Comparison of Data Analysis Programs

2.4.2014 5 / 58

DAWN: Data Analysis WorkbeNch

- Eclipse based program \Rightarrow written in Java (requires Java 1.7).
- "Implements sophisticated support for:
 - Visualization of data in 1D, 2D and 3D,
 - Python script development, debugging and execution,
 - Workflows for analyzing scientific data calling Python and binary codes."
- Main developers from Diamond and ESRF.
- Open source: EPL or Apache license (getting rid of (L)GPL).
- Open to external collaborating developers.
- "By and for the synchrotron community overlap with other communities like neutron scattering, photon science, etc."
- Supported platforms: Windows, Mac OS (beta version only), Linux.

http://www.dawnsci.org

http://hasyweb.desy.de/services/computing/dawnDocu

Gero Flucke (DESY)

2.4.2014 6 / 58

DAWN

Concept

- GUI is based on "Perspectives" and "Views".
- View: tab in a frame of the DAWN window, e.g.
 - a plot, contents of a file/directory, a tool...
- Perspective: groups views suitable for some task, e.g.
 - data browsing, python scripting,...
 - user can add or remove views.
- User's data organised in "Projects".
- Projects and status stored in "Workspace" (default: \$HOME/workspace).
- Many "Cheat sheets": built-in tutorials.
- Feedback button tell the developers
 - what does not work,
 - what would be nice to have.

DAWN

Note: mostly tested with version 1.4.0 - there is 1.4.1 and soon 1.5.0.

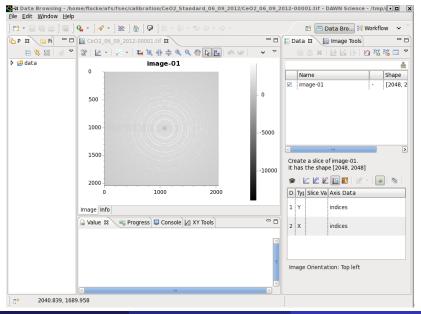
Many Interactive Features


- Browsing many data formats: Nexus/HDF5, images, .edf, ascii,fio (for DESY version)
- Investigate multi-D datasets:
 - 1D curves: value vs index or vs value of other dataset
 - 'value' can be expression of datasets.
 - stack of lines, stack in 3D
 - slices of multi-D datasets,
 - 2D: as surface, as image (featureful colour mapping [for non-RGB images], pixel 'averaging')
 - various nice zoom/panning features,
- Masking: creation, storage, automatic application...

DAWN

Many Interactive Features (ctd.)

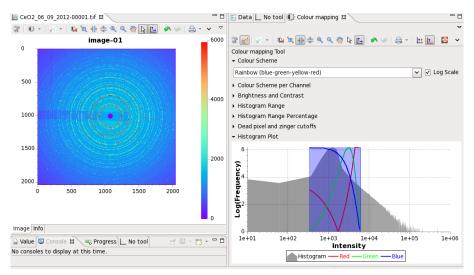
- Distribution fitting
 - finding and fitting peaks,
 - fitting polynomials,
 - arbitrary function fitting not working (but will be in 1.5),
 - no fitting of 2D.
- Region of interest and profiles: line, box, sector,...
- Specific scientific methods:
 - calibration for 2D \rightarrow 1D integration (Fit2D) will be in 1.5,
 - many methods go as perspectives into Diamond version (ESRF?).
- Time needed to find out how things work (as to be expected).
- Things do not always work as they should,
 - but feedback highly appreciated by development team!


Guided Tour through DAWN: First Screen

Comparison of Data Analysis Programs

2.4.2014

DAWN: Image Browsing

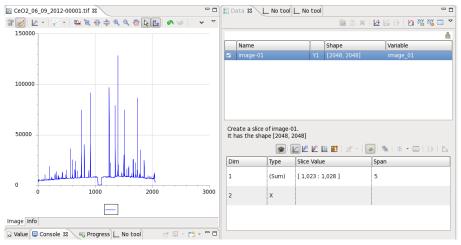


DAWN: Image Browsing

Name	min	max	Class	
🔝 image-01	-13852.0	605534.0	Float	
🕄 Image Stack		0.0	Double	
image stack	0.0	0.0	Double	

Easily check range of values in (here: image) dataset.

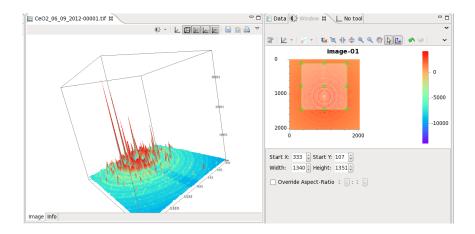
DAWN: Colour Scale


Full interactive control of colour mapping and outliers to ignore.

Gero Flucke (DESY)

2.4.2014 13 / 58

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

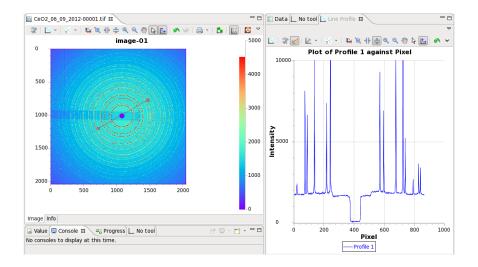

DAWN: Slice Datasets

Here: Sum of 5 consecutive slices.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

DAWN: Surface Plot

Live 3D view (instantly updated):


- Rotate as you want.
- Select a box

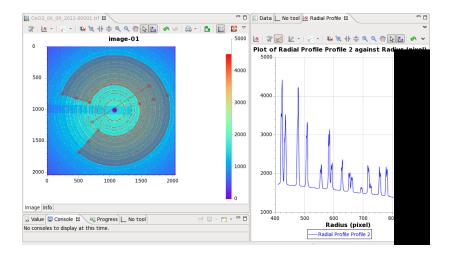
Gero Flucke (DESY)

2.4.2014 15 / 58

▲□▶▲圖▶▲필▶▲필▶ / 1211日 / 2000

DAWN: Line Profile

1D plot updated instantly if mouse moves line.


Gero Flucke (DESY)

2.4.2014 16 / 58

ELE NOR

< A

DAWN: Radial Profile

Other profiles available as well, e.g. azimuthal profile.

Gero Flucke (DESY)

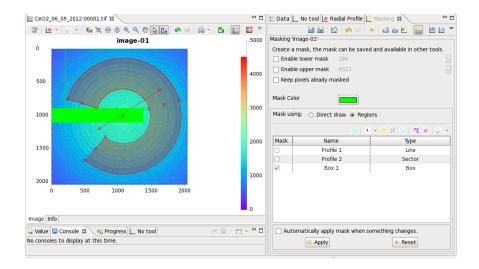
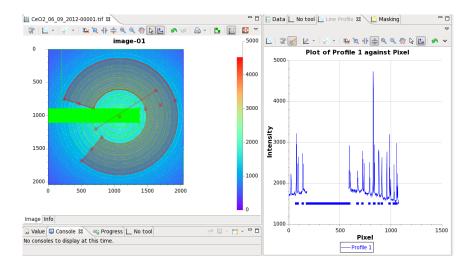

Comparison of Data Analysis Programs

Image: Image:

2.4.2014 17 / 58

< 글 ▶ < 글 ▶ ∃ 글 ♡ < @

DAWN: Masking

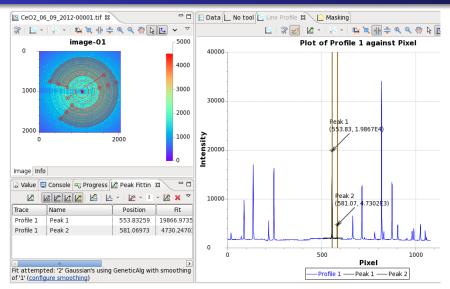

Choose regions, upper/lower masks, 'by hand',...

Gero Flucke (DESY)

Comparison of Data Analysis Programs

= nan

DAWN: Line Profile Masked


Mask taken into account in profiles.

Gero Flucke (DESY)

2.4.2014 19/58

ELE DOG

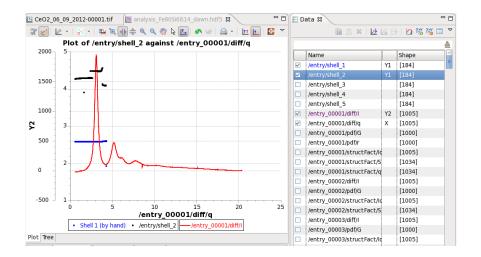
DAWN: Peak Fitting

Interactively define range and maximum number of peaks to be fitted

Gero Flucke (DESY)

2.4.2014 20 / 58

(can be many!). ~


DAWN: HDF5/NeXus Browsing

Name	Class	Dims	Туре	Data		🗎 🛍 🗶 🖾	🕒 🛛 🖄 🐝 🔲
▼ entry	Group		^		=		
shell_1	SDS	184	FLOAT64	double-click to view		Name	Shape
shell_2	SDS	184	FLOAT64	double-click to view		/entry/shell 1	[184]
shell_3	SDS	184	FLOAT64	double-click to view		/entry/shell 2	[184]
shell_4	SDS	184	FLOAT64	double-click to view		/entry/shell 3	[184]
shell_5	SDS	184	FLOAT64	double-click to view		/entry/shell 4	[184]
	Group					/entry/shell 5	[184]
⊽ diff	Group					/entry 00001/diff/I	[1005]
I.	SDS	1005	FLOAT32	double-click to view		/entry 00001/diff/q	[1005]
q	SDS	1005	FLOAT64	double-click to view		/entry_00001/pdf/G	[1000]
⊽ pdf	Group					/entry_00001/pdf/r	[1000]
G	SDS	1000	FLOAT64	double-click to view		/entry_00001/structFact/ld	[1005]
r	SDS	1000	FLOAT64	double-click to view		/entry_00001/structFact/S	[1034]
	Group					/entry_00001/structFact/g	[1034]
Icoherent	SDS	1005	FLOAT64	double-click to view		/entry_00001/structract/q /entry_00002/diff/l	[1054]
	SDS	1034	FLOAT64	double-click to view		/entry_00002/pdf/G	[1003]
norm	SDS	1		0.40231265		/entry_00002/pdi/G	[1005]
q	SDS	1034	FLOAT64	double-click to view		/entry_00002/structFact/s	[1034]
▶ entry_00002	Group						
A antra 00007	Crown				~	/entry_00003/diff/l	[1005]

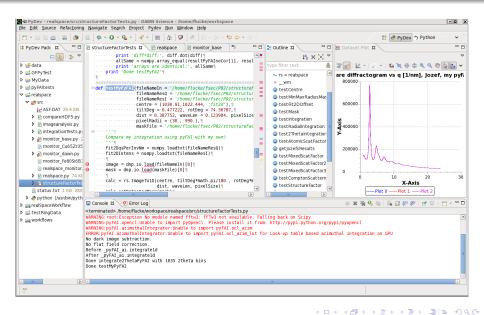
Easy browsing of HDF5/NeXus file content. (But it does not tell you what is a link...)

Gero Flucke (DESY)

DAWN: HDF5/NeXus Browsing

Simple selection what to draw as X, Y1 and Y2. (Non-default line styles a bit more complicated to achieve.)

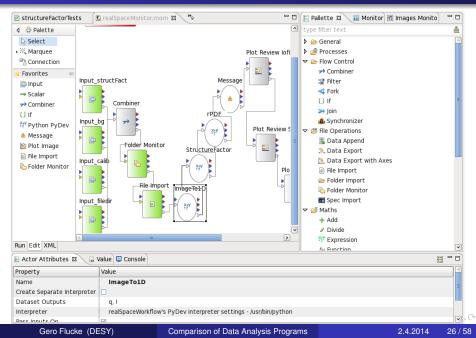
Gero Flucke (DESY)

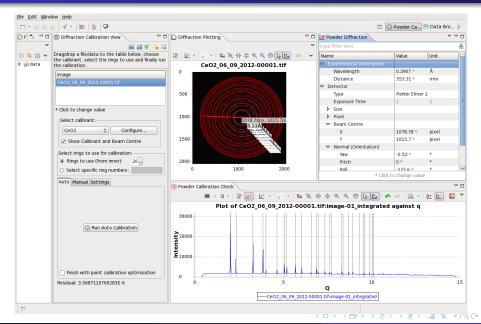

2.4.2014 22 / 58

DAWN: Python - Scripting Interface for Users

- Interactive prompt (using IPython).
- Nice script development environment (Eclipse and PyDev)!
- (C)Python: usual Python ("reference implementation"), implemented in C.
- Jython: Same language, implemented in Java.

(C)Python in DAWN	Jython in DAWN
 Access to plotting, file access for various formats. 	 Access to plotting, file access for various formats,
 Use standard python tools e.g. for function fitting. 	fitting. No standard (C)Python
 Access to DAWN Java 	tools available!
code possible via py4j (expert action).	 Simple to use any DAWN Java code?


DAWN: Python Development


DAWN: Workflows

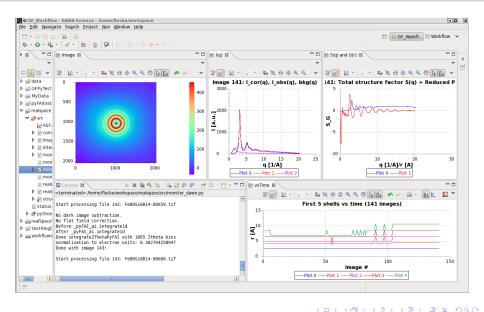
- Idea:
 - graphically compose standard components ("actors"),
 - to form a new analysis/data reduction procedure.
- Actors for
 - request user input,
 - open files or monitor directories,
 - flow control,
 - mathematics operations or execute python code,
 - plot or review plots,
 - export to files,...
- Can be run in batch mode, parallelised using threads.
- Interesting to use for monitoring procedure,
 - but I failed: little docu, not (yet) flexible enough, bugs,...

DAWN: Workflow Example

DAWN (1.5.0 beta): Diffraction Calibration

Gero Flucke (DESY)

Comparison of Data Analysis Programs


2.4.2014 27 / 58

DAWN: Real Space Analysis/Monitoring

- Use DAWN basically only for
 - Python code development,
 - graphics output.
- Configuration using configuration file.
- Monitoring directory for new images: "borrow" DPDAK's concept.
- Storing results on HDF5 file using h5py.
- Arrangement of "Views" stored as new "Perspective".
- Miss mechanism to "softly" stop procedure,
 - needed to close HDF5 file properly.
- Control of plot appearance via Python very limited:
 - cannot change colour/style of lines, titles, legend,...
 - no way (yet) to set proper legend entries
- Plotting acceptably fast (required fix from DAWN developers).

Gero Flucke (DESY)

DAWN: Real Space Analysis/Monitoring

2.4.2014 29 / 58

DAWN: Pros and Cons

- Flexible multi-dimensional data display and interactive analysis,
 - slicing, masking, profiling, fast 3D plots.
- Browsing file content, e.g. HDF5.
- Python as scripting language (built-in development environment).
- Large support from Diamond and ESRF.
- OSGI plugin-based design is modular and thus flexible.
- Java: difficult to import "external" algorithms.
- Fitting arbitrary functions not working yet.
- Still bugs hitting the user.
- Limited interface from Python to core functionalities (besides expert way via py4j).
- OSGI difficult to pick up until you understand it.

DPDAK: Directly Programmable Data Analysis Kit

- Pure Python program using 'standard' Python packages:
 NumPy, SciPy, matplotlib, fabio, wxPython.
- Developed in cooperation between DESY and MPIKG,
 - for "(online) analysis of 2D scattering data",
 - standard tool at P03 (S. Roth) and for its users,
 - author G. Benecke left end of January.
- Supported platforms: Windows, Linux.
- Open Source, GNU GPL.

https://dpdak.desy.de

・ 同 ト ・ 日 ト ・ 日 ト

DPDAK: Concept

			.4 <2>			• •	×
<u>F</u> ile	⊻iew	Tools	Options	<u>E</u> xport	<u>H</u> elp		
Ē.			- 8				
-		-					
							_
Logge	er						

 Minimalistic start-up GUI. Select and configure 'plugins':
data processing steps,tools (data display etc.),
 data export. Interfaces of processing plugins:
 input and output types, parameters, types: scalars, 1D arrays, strings,
file/directory paths.
• Processed data stored in 'database':
 no check if data always identical, for images just their paths,
• interactive analysis via tools.
 General image options: rotation, axis flipping, background.

Gero Flucke (DESY)

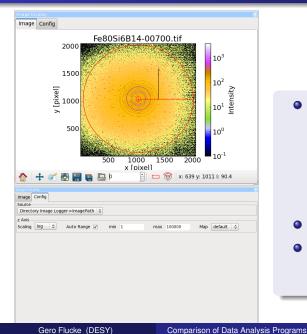
Comparison of Data Analysis Programs

DPDAK: Configure Data Processing Plugins

Select plugins from list.Select (matching) input.

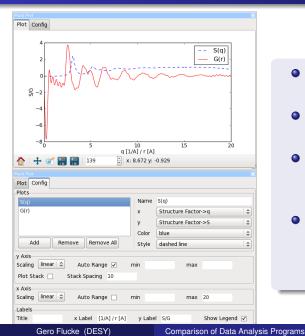
		•••
Plugins		Configure Plugins
CHI File Reader Curve Naximum Directory Image Logger Extract from Array Image Logger Intensity Correction (File) Line Integration Line Integration CLAD Normalize Curve Peak fit Porod fit Roi Values Reduced PDF Rho Parameter SAX5 Integration (Fi2D) Sax5 Integration (Fi2D) Sax6 Integration (Fi2D) Sax6 Integration (Fi2D) Sax6 Integration (Fi2D) Sax6 Integration (Fi2D) Sax6 Integration (Fi2D)		Directory image Logger Name Directory image Logger SAXS Integration ImagePath Directory image Logger.ImagePath Structure Factor I SAXS Integration x Log SAXS Integration x Log SAXS Integration x Reduced PDF
	SAXS I Struct	image Logger Integration ure Pactor uced PDF
		🧏 <u>C</u> ancel OK

Set parameters.


(HIDPDAK v0.3.4 File View Tools Op	tions Export Help	• •	×
🖴 🖄 🖻 👘	X		
Directory Image Logo	jer		- ^
Directory Path: /home/	flucke/fsec/P02/ Bro	wse	
Bilter: Fe80Si68	14.77272 tif		
SAXS Integration			
Profile:	Radial		0
Pixel Size X [um]:	200.0		× .
Pixel Size Y [um]:	200.0		-11
Pixel Size T [um]: Beam Center X [pixel]:	200.0		
Beam Center X [pixel]:	1029.36		
Rotation [deg]:	-84 001		
Tilt [deg]:	-0.189		
Detector Distance [mm]:			-
Wavelength [A]:	0.20712		
Start Azimuth [deg]:	145.38		
End Azimuth [deg]:	319.62		
Inner Radius [pixel]:	649.34		
Outer Radius [pixel]:	373.66		
Bins:	971		9
Geometry Correction:	×		
Empty Beam:	/home/flucke/ Bro	wse	ור
			ñ
Dark Current:	Bro	wse	
Structure Factor			~
-			>
ogger			
rocessing Counter: 1 rocessing Counter: 1			^
rocessing Counter: 1			
rocessing Counter: 1			
top processing.			Ξ
			2

Gero Flucke (DESY)

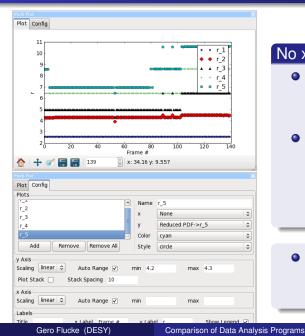
Comparison of Data Analysis Programs


≡ ୬৭. 33 / 58

DPDAK: Image Display

- Choose from database of processed images (broken in v0.3.4, showing always the last?).
- Directly select file.
- Range of 2D → 1D integration shown and editable!

DPDAK: 1D Plots

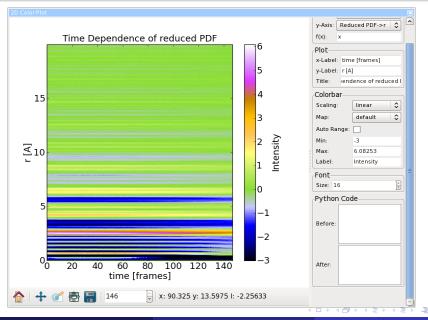

- Select x and y from output of plugins.
- Many lines can be overlayed.
- Choose result of which processed image to be shown.
- Stack of all lines also possible (broken in recent version 0.3.4?).

▲□▶▲圖▶▲필▶▲필▶ / 1211日 / 2000

2.4.2014

35 / 58

DPDAK: 1D Plots (ctd.)



No x axis chosen:

- y data is 1D array: array plotted vs its index.
- y data is scalar: scalar plotted vs frame number (can choose up to which frame number).
- Legend position static (but can be switched off).

2.4.2014 36 / 58

DPDAK: 2D Plot of Distribution vs Time

Gero Flucke (DESY)

Comparison of Data Analysis Programs

2.4.2014 37 / 58

DPDAK: Fitting

	Peak Fit		
	Range:	20-44	
	Model:	CB(190) GA(32,2000,7)	
	Fit Type:	least-squares	•
	Reuse Fit Results:		
	Max Iterations:	50	Ð
Peak FR Dis	iplay.		Plot
250	20	A Title	Title: A Title
200 150 8 9 100	10 -	- I - CB_0 - GA_1 - Sum	x-Axis Label: Sacale: linear y-Axis Label: q [nm] Sacale: linear Limits ⊠ Auto Scale Min: 0 Max: 500
50 20			

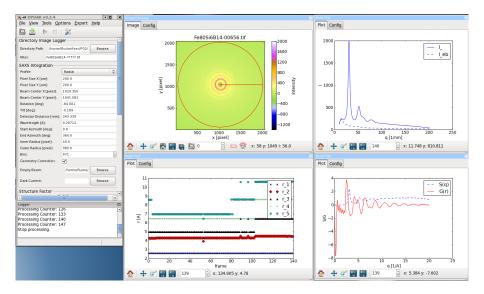
Processing Plugin to Fit

- (sum of) predef. functions, backgr.: constant, linear, peaks: Gauss, Lorentz, Pseudo-Voigt,
- restrict fit range,
- (possibly fixed) start values.

Peak Fit Display Plugin

- Original distribution (highlight fit region).
- Fitted curve and its components.

DPDAK: Real Space Analysis/Monitoring


• DPDAK designed for that purpose:

- add data processing plugins,
- configure (including display plugins),
- run!

• Already there:

- directory monitoring,
- $2D \rightarrow 1D$ integration,
- storage of results as DPDAK 'database' (can be exported to ascii - completely or per plugin).

DPDAK: Real Space Analysis/Monitoring

▲ E ▶ E E ♥ 𝔅 0
 2.4.2014 40/58

イロト イ理ト イヨト イヨト

- Built to be extendible by user,
 - and fulfils that promise (within boundaries...)!
- Rather simple interface for new plugins.
- How to handle multi-dimensional datasets?
- Does internal database scale with 10 thousands of images?
- Some intransparent shortcuts.
- Display plugins do not store configuration (could be added).
- Limited core support now that G. Benecke left.

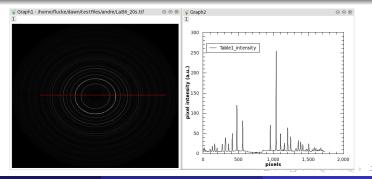
Mantid

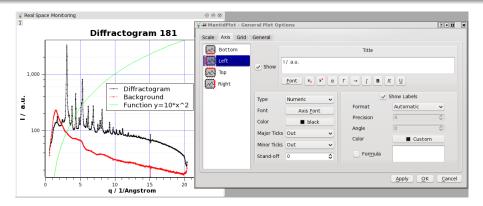
- Framework for "high-performance computing and visualisation of scientific data".
- To "manipulate and analyse Neutron and Muon scattering data, but could be applied to many other techniques."
- Main developers from ISIS and SNS.
- Written in C, C++ and Python (using scientific visualisation software "QtiPlot").
- Open source: GNU General Public License.
- Each release can be cited with a digital object identifier.
- Supported platforms: Windows, Linux, Mac OS.

http://www.mantidproject.org

Mantid: Concepts

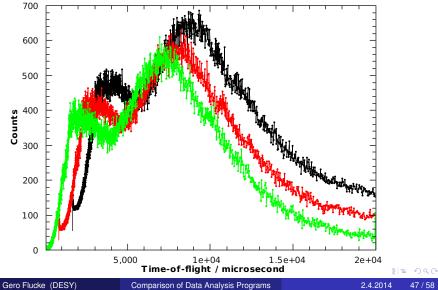
- Data processing via algorithms working on workspaces.
- Once data loaded into a workspace
 - investigate interactively: 1D, 2D, 3D plots, 1D fits, slices
 - or call algorithms.
- Store status (workspace, plots,...) as 'project'.
- Smooth integration of Python as scripting language:
 - access algorithms,
 - graphics control,
 - extend Mantid by Python algorithms and fit functions,
 - workspaces keep track of their history as Python script,
 - all but graphics available also outside MantidPlot GUI.
- Visualisation of instruments.
- Good documentation for beginners (GUI plus Python).


Mantid: Workspaces


- EventWorkspace: as Workspace2D, keeping data unbinned.
- MDWorkspaces: Signal and error for coordinates of 1–9 dimensions.
- TableWorkspace: rows of columns of particular types (text, integer, ...).
- Several variants, e.g. file-backed, special purpose,

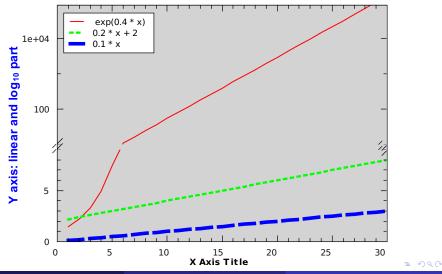
Mantid: Data Formats

- Generic "Load" algorithm chooses proper sub-algorithm.
- No generic loader to browse arbitrary HDF5 files.
- No loader for image files.
 - MantidPlot can open image files.
 - All I found: make a line profile.
 - Nothing to create a workspace from an image.


Mantid: 1D Plots

- Plotting needs input workspaces.
- Interactive control of plot appearance.
- Add (parametric) functions.
- May place plots next to each other in same window.

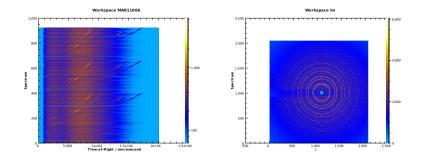
Mantid: 1D Waterfall


MAR11060

47 / 58

Mantid: Axis with Break

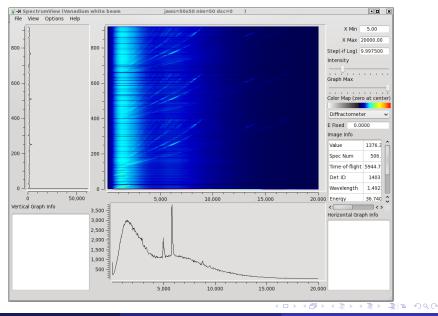
Plot with axis break



Gero Flucke (DESY)

Comparison of Data Analysis Programs

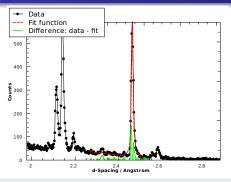
2.4.2014 48 / 58


Mantid: "2D Colour Fill"

Default colour scale does not exclude outliers.Also 3D views available (first display slow).

A D M A A A M M

Mantid: Spectrum Viewer



Gero Flucke (DESY)

Comparison of Data Analysis Programs

2.4.2014 50 / 58

Mantid: 1D Fitting

	Name[L]	f0.A0[Y]	f0.A1[Y]	f1.Height[Y]	f1.PeakCentre[f1.Sigma[
0	f0.A0	100	-99.9113	0.00387227	0.775206	4.36445
1	f0.A1	-99.9113	100	0.0112753	-0.744489	-4.85306
2	f1.Height	0.00387227	0.0112753	100	-9.86734	-60.0745
3	f1.PeakCentre	0.775206	-0.744489	-9.86734	100	13.4125
4	f1.Sigma	4.36445	-4.85306	-60.0745	13.4125	100

- Graphically choose fit range.
- Compose fit function: various background and peak types.
- Graphically choose start values of peaks.
- Graphical result includes difference "data minus fit" (and possibly individual components).
- Fit result and errors (incl. normalised covariance matrix) available as workspace.

Mantid: 1D Fitting (ctd.)

Function (Chi-sq = 4.43327	
Fit 👻 Disp	lay 🗸 Setup
operty	Value
Functions	
Туре	CompositeFunction
NumDeriv	False
- f0-LinearBackground	
Туре	LinearBackground
A0	275.711808
- A1	-105.840393
 f1-Lorentzian 	
Туре	Lorentzian
Amplitude	7.885054
PeakCentre	2.462696
FWHM	0.007469
Settings	
Workspace	GEM38370_Focussed
Workspace Index	4
StartX	0.013646
EndX	3.369098
Output	GEM38370_Focussed
Minimizer	Levenberg-Marquardt
Ignore invalid data	False
Cost function	Least squares
Plot Difference	🕑 True
Plot Composite Me	False
Convolve Composit	False

Many options

- Fit function composed of arbitrary amount of components.
- Rich set of predefined functions.
- Define your own function (e.g. implemented in Python).
- Tie parameter values to functions of other parameters.
- Fix parameters.

o . . .

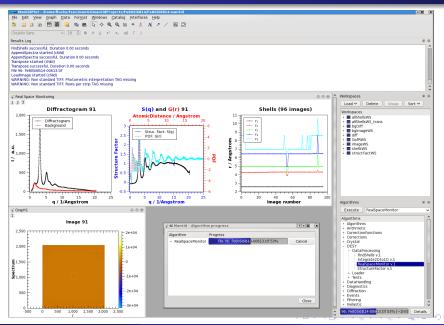
- Masking? There is something I did not investigate.
- Poor Python editor (but can use external one).
- Python algorithms are not really object-oriented problem:
 - CPU-intense initialisation,
 - two different configurations in one data processing chain.
- Cannot reset python terminal once I messed it up...(?)

Mantid: Real Space Analysis/Monitoring

- Make use of algorithm/workspace concept.
- Write algorithms in Python:
 - LoadImage, using fabio,
 - other using "common code base",
 - Fourier transformation from S(q) to G(r) already in Mantid.
- (Ab)use Workspace2D even for images (waste of space: errors, "X" values).
- One master algorithm "RealSpaceMonitor":
 - Configured via configuration file (not really Mantid style).

¥-∺ R	ealSpaceMonitor input dialog ? • • ×	
diffra PDF	toring directory for image files, calculate actogram, total structure factor S(q) and reduced G(r), finally finding and keeping track of shell ions. Input parameters given as configuration file.	
Con	figuration /monitor_Fe80Si6B14.cfg Browse	
?	Run Cancel	률 ▶ ▲ 몸 ▶ ▲ 몸 ▶ – 몸
	Comparison of Data Analysis Programs	2 4 2014

54 / 58


Gero Flucke (DESY)

Mantid: Real Space Analysis/Monitoring

Master Algorithm RealSpaceMonitor

- Watching directory ("borrow" DPDAK's logic again).
- Calling other algorithms.
- Write HDF5 output file (using h5py).
- Report progress (and catch cancellation to flush HDF5 file).
- Doing graphics output.
- Large control of line plots: common window, axes, legend, ...
- 2D image plot in extra window:
 - no control of appearance from Python,
 - slow.

Mantid: Real Space Analysis/Monitoring

Gero Flucke (DESY)

Comparison of Data Analysis Programs

2.4.2014 56 / 58

Mantid: Pros and Cons

- Deep integration of Python as scripting language:
 can extend MantidPlot!
- Lots of graphics control (interactively and via Python).
- Flexible function fitting with error propagation.
- Version control via doi.
- No built-in image handling.
- Workspace concept may not be flexible enough,
 - but did not investigate too much the multi-dimension version.
- Neutron and muon scattering driven:
 - set of available algorithms,
 - workspaces with signal (counts...) and error,
 - wording.

2.4.2014 57 / 58

Summary

- All three programs have their own value.
- **DAWN** has the potential to cover standard needs of X-ray data analysis tasks, but suffers from limited extendability by users and (still) little bugs.
- **DPDAK** has proven itself in praxis and is extendible by design, but is not 'complete' and might fail for multi-dimensional data sets.
- **Mantid** provides great integration of user (Python) extensions, good control of plotting, and a professional fitting interface, but is currently driven by neutron/muon scattering needs.

Outlook

Plan to exercise a SAXS analysis procedure as well.

Gero Flucke (DESY)

What to Do to Test on Your Own?

DAWN, DESY Version (i.e. .fio Format Aware)

- Login on workgroup server p3-wgs12.
- Run

/scratch/DawnVanilla-1.4.1.v20131212-1003-linux64/startDawn.sh.

- Note that it redirects the workspace to /scratch/\$USER/dawn/workspace (\$USER is your login name).
- Or try a more recent, but probably less stable version that supports reading of .fio files even from CPython:

/scratch/DawnVanilla-1.5.0.v20140326-1353-linux64/startDawn.sh.

Mantid

A bit more complicated - please contact me...

Please contact me (gero.flucke@desy.de) if you need help.

Gero Flucke (DESY)

What to Do to Test on Your Own? (ctd.)

DPDAK - Windows

Follow

https://dpdak.desy.de/index.php/Install_dpdak_v0.3.2#Binary_Package.

I did not test that...

DPDAK - Linux

- Login on workgroup server p3-wgs12.
- Download 'Source/Linux' from https://dpdak.desy.de.
- Put the *.tar.gz file into SOME/DIRECTORY.
- cd SOME/DIRECTORY
- tar xzf dpdak-dpdak.tar.gz
- python dpdak/main.py

Please contact me (gero.flucke@desy.de) if you need help.