

Methoden moderner Röntgenphysik: Streuung und Abbildung

Lecture 13	Vorlesung zum Haupt- oder Masterstudiengang Physik, SoSe 2019 G. Grübel, <u>F. Lehmkühler</u> , L. Müller, O. Seeck, L. Frenzel, M. Martins, W. Wurth		
Location	Lecture hall AP, Physics, Jungiusstraße		
Date	Tuesday Thursday	12:30 - 14:00 8:30 - 10:00	(starting 2.4.) (until 11.7.)

Soft Matter – Timeline

- Di 07.05.2019 Soft Matter studies I: Methods & experiments Definitions, complex liquids, colloids, storage ring and FEL experiments, setups, liquid jets, ...
- Do 09.05.2019 Soft Matter studies II: Structure
 SAXS & WAXS applications, X-ray cross correlations, ...
- Di 14.05.2019 Soft Matter studies III: Dynamics
 XPCS applications, diffusion, dynamical heterogeneities, ...
- Do 16.05.2019 XPCS and XCCA simulation and modelling
- Di 21.05.2019 Case study I: Glass transition
 Supercooled liquids, glasses vs. crystals, glass transition concepts,
 structure-dynamics relations, ...
- Do 23.05.2019 Case study II: Water
 Phase diagram, anomalies, crystalline and glassy forms, FEL
 studies, ...

Probing dynamics with coherent X-rays: X-ray photon correlation spectroscopy (XPCS)

X-ray scattering from disordered samples: speckles \rightarrow structure decoded

Methoden Moderner Röntgenphysik - Vorlesung im Masterstudiengang, Universität Hamburg, SoSe 2019

XPCS

- **Time domain**: changing sample structure \rightarrow change of speckle pattern
- Correlation function $g_2(q,\tau) = \frac{\langle I(q,t)I(q,t+\tau)\rangle_t}{\langle I(q,t)\rangle_t^2} = 1 + \beta^2 |f(q,\tau)|^2$, speckle contrast $\beta = \operatorname{std}(I)/\langle I \rangle$
- Intermediate scattering function $f(q, \tau) = S(q, \tau)/S(q, 0)$ ۲

XPCS experiments – requirements

- Degree of coherence \rightarrow speckle contrast
- Need to resolve speckles
 - speckle size $s \approx \frac{\lambda D}{h}$
 - using hard X-rays $(\lambda \sim 10^{-10} \text{ m})$

$$\Rightarrow \frac{bs}{D} = 10^{-10} \text{ m}$$

$$\Rightarrow bs \sim 10^{-10} \text{ m}^2 \text{ for } D \sim 1 \text{ m}$$

- Statistics and q-dependence: 2D detectors (e.g. CCD)
 - Typical pixel sizes of $\sim 10 100 \ \mu m$
 - Consequently beam sizes in the µm regime
- Limit of time scales by detector read-out
 - CCD: ~ seconds
 - Photon counting: >kHz

XPCS experiments – requirements

Diffusion in Soft Matter

- Brownian motion: random movement of particles (pollen collision with water molecules (Einstein 1905))
- Omnipresent in soft matter systems
- Derivation (after Langevin, here only one direction *x*):

$$m\frac{d^{2}x}{dt^{2}} = F - f\frac{dx}{dt}$$
(with force *F* and viscous friction $F_{R} = -f\frac{dx}{dt}$)

$$\Leftrightarrow m \frac{d}{dt} \langle v \rangle = \langle F \rangle - f \langle v \rangle \qquad (\text{Averaging})$$

 $\langle F \rangle = 0$ for random particle collisons

$$\frac{d}{dt} \langle v \rangle = -\frac{f}{m} \langle v \rangle$$
$$\Rightarrow \langle v(t) \rangle = v(0) \exp\left(-\frac{m}{f}t\right)$$

Diffusion of particles

Diffusion in Soft Matter

→ Mean drift velocity $\langle v \rangle$ decays with time. Back to $m \frac{d}{dt} v = F - fv$. Multiply by instantaneous position *r* of an particle and average yields:

$$\frac{d^2}{dt^2} \langle r^2 \rangle + \frac{f}{m} \frac{d}{dt} \langle r^2 \rangle = 2 \langle v^2 \rangle$$

Following the equipartition theorem $(\langle v^2 \rangle = \frac{3k_BT}{m})$ the equation can be solved with the result

$$\langle r^2 \rangle = \frac{6k_B Tm}{f^2} \left(\frac{f}{m} t - \left[1 - \exp\left(-\frac{f}{m} t \right) \right] \right)$$

For $t \gg \frac{m}{f}$ we obtain with Stoke's law (friction of spheres, $f = 6\pi R\eta$)

$$\langle r^2 \rangle = \left(\frac{k_B T}{\pi R \eta}\right) t = 6Dt$$
 with diffusion coefficient $D = \frac{k_B T}{6\pi \eta R}$

Diffusion in Soft Matter

Mean squared displacement $\langle r^2 \rangle$ – particles in water

Characteristic time $\tau_b = \frac{R^2}{D}$ to move by one radius (here $4.5 \cdot 10^{-9}$ s for R = 1 nm)

Diffusion in Soft Matter – XPCS

Intermediate scattering function $f(q, \tau) = S(q, \tau)/S(q, 0)$ with

$$f(q,\tau) = \frac{1}{N} \left(\sum_{i=1}^{N} \sum_{j=1}^{N} \exp(i\mathbf{q} \cdot \left[\mathbf{r}_{\mathbf{i}}(0) - \mathbf{r}_{\mathbf{j}}(\tau) \right] \right) \right)$$

For diffusion, only single particle properties are probed \rightarrow cross terms $i \neq j$ average out and $S(q) = 1 \rightarrow$ we obtain

$$f(q,\tau) = \frac{1}{N} \left\{ \sum_{i=1}^{N} \exp(i\mathbf{q} \cdot [\mathbf{r}_{i}(0) - \mathbf{r}_{i}(\tau)]) \right\}$$

And finally (cf. Physica 32, 415 (1966)) the result for diffusion

$$f(q,\tau) = \exp(-Dq^2\tau)$$

Diffusion by XPCS – Notes

- In XPCS, correlation function for diffusion: $g_2(q,\tau) = 1 + \beta^2 |f(q,\tau)|^2 = 1 + \beta^2 \exp(-2Dq^2\tau)$
- Relaxation time $\tau_0 = \frac{1}{\Gamma} = \frac{1}{Dq^2} \rightarrow$ characteristic $\tau_0 \propto q^{-2}$
- Measuring g_2 allows to obtain particle size $R = \frac{k_B T \tau_0 q^2}{6\pi \eta}$ when solvent properties are known \rightarrow Dynamical light scattering
- On the other hand, known particles can be used to probe solvent properties, in particular viscosity $\eta \rightarrow$ microrheology

XPCS – correlation functions

Spherical particles with R = 10 nm in water

- Stretched and compressed correlation functions: Kohlrausch-Williams-Watts function $f(q, \tau) = \exp(-(\Gamma \tau)^{\gamma})$
- Measure of width of distribution of (local) relaxation times

XPCS – correlation functions

Q-dependencies

- Diffusion: $\tau_0 \propto q^{-2}$, $\langle r^2 \rangle \propto \tau$
- More general $(\tau_0 \propto q^{-\delta})$: $\langle r^2 \rangle \propto \tau^{\alpha} \rightsquigarrow r \propto \tau^{\frac{\alpha}{2}} \rightsquigarrow \tau \propto q^{\frac{2}{\alpha}} \Rightarrow \alpha \delta = -2$
- Diffusion: $\delta = 2$
- Subdiffusion: $\delta > 2$
- Superdiffusion: $\delta < 2$
- Balistic motion: $\delta = 1$

→ The analysis of both exponents γ and δ provides information on the type of dynamics

XPCS – instantaneous correlation function

Measured speckle patterns

time

Correlate & average \rightarrow Shortest lag time τ_s

 $\bigvee \land \bigvee \land \lor \land \lor \land \lor$

Correlate & average \rightarrow 2nd shortest lag time $2\tau_s$

→ $g_2(q, \tau)$ averaged over pairs of same lag time τ (...**and** pixels!) taken during the experimental run

Methoden Moderner Röntgenphysik - Vorlesung im Masterstudiengang, Universität Hamburg, SoSe 2019

XPCS – instantaneous correlation function

But: sample may change during the measurement

- → Two-time correlation function $C_I(q, t_1, t_2) = \frac{\langle I(q, t_1)I(q, t_2) \rangle}{\langle I(q, t_1) \rangle \langle I(q, t_2) \rangle}$
- t_1, t_2 are points in experiment time, e.g.:

- Sample ages along $t_1 = t_2$ diagonal $t_{age} = \frac{t_2 t_1}{2}$
- Lag time $\tau = |t_2 t_1|$

XPCS – signal to noise

- Reasonable definition $SNR = \frac{g_2 1}{\sqrt{\operatorname{var}(g_2)}}$
- $\operatorname{var}(g_2) = \frac{g_2}{N_p \langle n_c \rangle} = \frac{g_2}{n_x n_y T t_a I^2}$
 - N_p number of correlated pairs averaged for g_2
 - $\langle n_c \rangle$ mean number of counts per exposure time
 - Using count rate *I* per pixel, accumulation time t_a , number of pixels $P = n_x n_y$, total experimental duration *T*.
- $SNR = \frac{g_2 1}{\sqrt{\operatorname{var}(g_2)}} = \sqrt{PTt_a/g_2} \cdot I(g_2 1)$
 - Substitute g_2 with the limit of $\tau \to 0$: $g_2 = \beta^2 + 1$
 - Low contrast limit: $\sqrt{g_2} \approx 1$

 $\rightarrow SNR = \beta^2 I \sqrt{PTt_a}$

• Consequence: Increase of *I* by $10 \rightarrow$ accessible time scale 100x smaller!

see P. Falus et al. J. Synchr. Rad. 13, 253 (2006)

- Today: $\tau_c \ge 1 \ \mu s$
- Next-generation storage rings: 10⁴ gain in $\tau_c \Rightarrow \tau_c \approx ns$
- European XFEL (avg. Brilliance): 10^{10} gain in $\tau_c \Rightarrow \tau_c \approx fs$
 - · Limitations by pulse length and repetition rate

XPCS example 1 – dynamics in colloidal systems

SiO₂ colloids in glycerol/water

- Low concentration: volume fraction 1%
- SAXS: Formfactor
- XPCS: diffusion with $\Gamma \propto q^2$

XPCS example 1 – dynamics in colloidal systems

PMMA particles in decalin

- High concentration: volume fraction 37%
- SAXS: Structure factor
- XPCS results deviate from $\Gamma \propto q^2$
- Effective diffusion constant $D(q) = D_0 H(q)/S(q)$ for short times, hydrodynamic function H(q)
- $H(q) = 1 \Rightarrow D(q) = D_0/S(q)$: de Gennes narrowing, i.e. slowing down around nextneighbour distances.

G. Grübel et al. In "Soft Matter Characterization", Springer (2008) Methoden Moderner Röntgenphysik - Vorlesung im Masterstudiengang, Universität Hamburg, SoSe 2019

XPCS example 2 – microrheology

Tracer particles to measure solvent properties

- Weak scattering signal from solvent
- Large q-region has to be probed (low speckle contrast)
- Slower dynamics in SAXS regime
- Indirect access to solvent properties only
- Length scale of several 10 nm given by the tracer particle size
- Low tracer particle concentrations, so that S(q) = 1 for the particles \rightarrow avoid any particle-solvent interactions

XPCS example 2 – microrheology

- SiO₂ particles as tracer for gelation of methylcellulose in water
- Gel-gel-transition: Turbid gel for $T \ge 60$ °C
- Stretched ($\gamma < 1$) to compressed ($\gamma > 1$) transition (KWW exponent!)
- Hyper-diffusive & compressed at high temperatures \rightarrow stress-dominated

DES

XPCS example 3 – directed motion

Sample undergoes (shear) flow

- Flowing sample to avoid radiation damage
- Sedimentation of particles
- $f(q, \tau)$: product of diffusive and advective contributions $f(q, \tau) = f_d(q, \tau) \cdot f_a(q, \tau) = \exp(-\Gamma t) \cdot f_a(q, \tau)$
- $f_a(q, \tau)$ can become complicated

Perpendicular to flow it simplifies to $g_{2,\perp}(q,\tau) = 1 + \beta^2 \exp(-2\Gamma\tau) \exp(-(\nu_{tr}t)^2)$, transit-induced frequency ν_{tr}

In flow direction: oscillating behaviour

XPCS example 3 – directed motion

Particle sedimentation J. Möller et al. PRL 118, 198001 (2017)

S. Busch et al. Eur. Phys. J. E 26, 55 (2008)

XPCS example 4 – XPCS at FEL

Parameter	Storage ring	FEL
Time Structure	Continuous	Pulses
Coherence	Partial	Full
Intensity	Stable	Fluctuations
Position / pointing	Stable	Fluctuations
Energy spectrum	Stable	Fluctuations
Time lag	Detector- and flux- limited ($\geq 10^{-6}$ s)	Repetition rate
		(60/120 Hz: LCLS/SACLA >MHz: E-XFEL)

State-of-the-art detectors at storage ringsMaxipix (ESRF)~ 300 HzLambda (PETRA III, APS)~ >2 kHzEiger (PETRA III, NSLS-II, ESRF)~ kHz

XPCS example 4 – XPCS at FEL

Diffusion of nanoparticles in glycerol and static sample with 20 Hz rep. Rate

Methoden Moderner Röntgenphysik - Vorlesung im Masterstudiengang, Universität Hamburg, SoSe 2019

FL et al. Sci. Rep. 5, 17193 (2015)

XPCS example 4 – XPCS at FEL

- XPCS simulations
- Moving beam & beam size modifications on shot-to-shot basis
- Extracted relaxation rates welldescribed by diffusion
- Drop of effective contrast

FL et al. Sci. Rep. 5, 17193 (2015)

XPCS example 5 – ultrafast XPCS: XSVS

- So far: short exposure time $t_e \ll \tau_0$
- Dynamics change during exposure → reduction of contrast
- Typical FEL pulse length: $\tau_0 = 100$ fs

XPCS example 5 – ultrafast XPCS: XSVS

Finite pulse lengths

• Contrast as function of exposure $(\beta^2 = \frac{\langle I^2 \rangle}{\langle I \rangle^2} - 1)$

•
$$\beta^2(q, t_e) = \frac{2\beta_0^2}{t_e} \int_0^{t_e} \left(1 - \frac{\tau}{t_e}\right) |f(q, \tau)|^2 d\tau$$

- For diffusion, this can be solved analytically (→ Exercise!)
- · Limited by accessible exposure times
 - Pulse lengths (FEL)
 - Detector read out & flux (storage rings)
- FEL: pulse lengths variations & split-pulse applications

XPCS example 5 – ultrafast **XPCS**: double shot

- Split FEL pulse in two and delay one of them
- Speckle pattern: sum of two patterns
- XSVS-type of analysis
- Typically low count rates → obtain contrast from distribution functions of intensity

XPCS: further examples

- Glass dynamics and glass transition (\rightarrow lecture 15)
- In general, large q experiments
 - Water (\rightarrow lecture 16)
 - Domain wall dynamics
 - Network glasses (SiO2, ...)
 - ...

. . .

• Liquid surfaces: capillary waves \rightarrow oscillating ISF

• Relation to neutron spin echo and dynamic light scattering

Accessible timescales for XPCS

Sequential XPCS at storage ring and FEL sources: $\tau \gtrsim 0.1$ ms

XSVS at FEL sources: $\tau \sim$ pulse lengths ~ 0-100 fs

Split-pulse XPCS: $\tau \leq 1$ ns

Sequential XPCS at European XFEL: 600 μ s $\geq \tau \geq$ 220 ns

XPCS at DLSR: $\tau \leq \text{sub-}\mu\text{s}$

