

Methoden moderner Röntgenphysik II: Streuung und Abbildung

Lecture 19	Vorlesung zum Haupt- oder Masterstudiengang Physik, SoSe 2018 G. Grübel, <u>A. Philippi-Kobs</u> , F. Lehmkühler, L. Frenzel, M. Martins, W. Wurth		
Location	Lecture hall AP, Physics, Jungiusstraße		
Date	Tuesday Thursday	13:00 - 14:30 8:30 - 10:00	(starting 3.4.) (until 12.7.)

Outline

Part II/2:

Studies on Magnetic Nanostructures

by André Philippi-Kobs (AP)

[19.6.] X-ray Magnetic Circular Dichroism (XMCD) & Resonant Magnetic Small Angle X-ray Scattering (mSAXS)

- Role of Spin-Orbit Coupling and Exchange Splitting
- Sum Rules
- XMLD and Natural Dicroisms
- mSAXS of Magnetic Domain Patterns

[21.6.] Femtomagnetism

- Introduction to Ultrafast Magnetization Dynamics Induced by Femtosecond Infrared Pulses
- Pump-Probe Experiments of Nano-Scale Magnetic **Domain Patterns**
- All-Optical Switching
- Manipulating Magnetism by XUV and THz Pulses

FEL

- 1.) Ultrafast demagnetization (IR pump, $\lambda = 800 \text{ nm}$)
 - Discovery and typical parameters
 - Three-temperature model
 - Ultrafast demagnetization of nano-scale domain patterns

- TR Fourier transform holography

- 2.) All-optical switching (IR pump, $\lambda = 800 \text{ nm}$)
 - Ferrimagnetic systems
 - Is there AOS in ferromagnetic systems?
- 3.) High X-ray fluences (XUV pump, $\lambda = 20.8 \text{ nm}$)
- 4.) THz dynamics (THz pump, $\lambda = 100 \ \mu m$)

Electromagnetic spectrum

UΗ

- > <u>Ultrafast demagnetization (IR pump, λ = 800 nm)</u>
 - Discovery and typical parameters

- Pulse duration 70 fs
- In-plane magnetized Ni film
- Characteristic time of demagnetization of 260 fs
- Recovery time of magnetization >100 ps
- Fluence of 7 mJ/cm²
 (2.8*10¹⁶ Photonen/cm², 4*10²⁹ Photonen/(cm²s))

E. Beaurepaire et al., Phys. Rev. Lett. 76, 4250 (1996).

Methoden Moderner Röntgenphysik II - Vorlesung im Haupt-/Masterstudiengang, Universität Hamburg, SoSe 2018, A. Philippi-Kobs

- Ultrafast demagnetization
- 1.) Creation of highly excited electrons during the pulse duration (< 20 fs)

2.) Thermalization of electron system (<200 fs) due to electron-electron-scattering

Ultrafast demagnetization

 3.) Thermalization of electron, phonon, and spin reservoirs (<1 ps) due to electron-phonon-, electron-spin-, and phonon-spin-scattering

 C_i : specific heat, T_i : temperature of electrons, phonons, spins G_i : strength of interaction between electrons, phonons, spins

UH iii Universität Hamburg DER FORSCHUNG I DER LEHRE I DER BILDUNG

Femtomagnetism

Ultrafast demagnetization

4.) Cooling of sample due to interaction with environment (~100 ps - 100 ms)

JOURNAL OF APPLIED PHYSICS 101, 09D102 (2007)

Ultrafast magnetization dynamics in high perpendicular anisotropy $[Co/Pt]_n$ multilayers

Chemical Physics 318 (2005) 137-146

Ultrafast magnetization dynamics in ferromagnetic cobalt: The role of the anisotropy

- Ultrafast demagnetization
- T-dependence of saturation magnetization (low T)

$$M_{\rm S}(T) = M_{\rm S}(0)(1 - BT^{3/2})$$

 $B = 3.3 \cdot 10^{-6} \text{ K}^{-3/2}$ for bulk Co

- Collective spin excitations = "magnons" or spin wave (low T)

Magnon reduces saturation magnetization by *h*

- Single spin excitations (high T)

Single spin exc. reduces saturation magnetization

by ħ

Universität Hamburg Der Forschung i Der Lehre i Der Bildung

Femtomagnetism

<u>Ultrafast demagnetization</u>

... of magnetic domain pattern

ARTICLE

Received 18 Apr 2012 | Accepted 3 Sep 2012 | Published 2 Oct 2012

DOI: 10.1038/ncomms2108

Ultrafast optical demagnetization manipulates nanoscale spin structure in domain walls

B. Pfau¹, S. Schaffert¹, L. Müller², C. Gutt², A. Al-Shemmary², F. Büttner^{1,3,4,5}, R. Delaunay⁶, S. Düsterer²,
S. Flewett^{1,4}, R. Frömter⁷, J. Geilhufe⁸, E. Guehrs¹, C.M. Günther¹, R. Hawaldar⁶, M. Hille⁷, N. Jaouen⁹,
A. Kobs⁷, K. Li⁶, J. Mohanty¹, H. Redlin², W.F. Schlotter¹⁰, D. Stickler⁷, R. Treusch², B. Vodungbo^{6,11},
M. Kläui^{3,4,5}, H.P. Oepen⁷, J. Lüning⁶, G. Grübel² & S. Eisebitt^{1,8}

IR-pump-XUV-probe experiment

<u>Ultrafast demagnetization</u>

υH

... of magnetic domain pattern

Ultrafast demagnetization (see above)

Decrease in radius of scattering ring

UΗ

> <u>Ultrafast demagnetization</u> ... of magnetic domain pattern

Super-diffusive currents broaden domain walls by 20 nm (FWHM) Change of scattering form factor of domain walls and hence q_{peak}

B. Pfau et al., Nat. Commun. 3 (2012).

- <u>Ultrafast demagnetization</u> ... of magnetic domain pattern
- Explanation of q_{peak} shift via superdiffusive currents (spin-dependent electron scattering)
 Fermi's Golden rule: Scattering rate of electrons from state k to k'

Universität Hamburg DER FORSCHUNG I DER LEHRE I DER BILDUN

Femtomagnetism

- > <u>Ultrafast demagnetization</u> ... of magnetic domain pattern
- Explanation of q_{peak} shift via superdiffusive currents (spin-dependent electron scattering)
 Fermi's Golden rule: Scattering rate of electrons from state k to k'

<u>Ultrafast demagnetization</u> ... of magnetic domain pattern -

Experimental parameters at FERMI

- 600 shots per helicity
- 4.1 mJ/cm² \leq fluence \leq 16.3 mJ/cm²
- Repetition rate 10 Hz
- λ = 20.8 nm (M-edge of Co)
- Fixed time delay of 1 ps
- Pump laser (λ = 780 nm) at 45° with respect to sample surface
 - Sample: (Co(0.4 nm)/Pd(0.2 nm))₃₀

- Blurring due to domain rearrangements initiated by quasi-static heating (thermal demagnetization)
- Global contrast scale \propto saturation magnetization \rightarrow <u>ultrafast demagnetization on the nanoscale</u>
- Small contrast at high fluences due to high demagnetization and/or domain rearrangements
- Resolution of 40 nm limited by exp. geometry is too low to resolve domain wall broadening

PRL 99, 047601 (2007)

PHYSICAL REVIEW LETTERS

week ending 27 JULY 2007

Ś

All-Optical Magnetic Recording with Circularly Polarized Light

> All-optical switching

C. D. Stanciu,^{1,*} F. Hansteen,¹ A. V. Kimel,¹ A. Kirilyuk,¹ A. Tsukamoto,² A. Itoh,² and Th. Rasing¹ ¹Institute for Molecules and Materials, Radboud University Nijmegen, Toernooiveld 1, 6525 ED Nijmegen, The Netherlands ²College of Science and Technology, Nihon University, 7-24-1 Funabashi, Chiba, Japan (Received 2 March 2007; published 25 July 2007)

- Discovery for ferrimagnetic materials

Gd₂₂Fe_{74.6}Co_{3.4}

Single-shot

Methoden Moderner Röntgenphysik II - Vorlesung im Haupt-/Masterstudiengang, Universität Hamburg, SoSe 2018, A. Philippi-Kobs

-σ+

←σ

- All-optical switching
- Time-resolved and element-selective studies

Transient ferromagnetic-like state mediating ultrafast reversal of antiferromagnetically coupled spins 2011

I. Radu^{1,2}, K. Vahaplar¹, C. Stamm², T. Kachel², N. Pontius², H. A. Dürr^{2,3}, T. A. Ostler⁴, J. Barker⁴, R. F. L. Evans⁴, R. W. Chantrell⁴, A. Tsukamoto^{5,6}, A. Itoh⁵, A. Kirilyuk¹, Th. Rasing¹ & A. V. Kimel¹

doi:10.1038/nature09901

- All-optical switching
- Time-resolved and element-selective studies (theoretical model)

Laser-induced magnetization dynamics and reversal in ferrimagnetic alloys

Helicity-independent AOS switching:

- 0-0.3 ps: complete demagnetization of Fe
- 0.4-1.5 ps: transfer of magnetic moment from Gd to Fe to enhance entropy yields to switching of magnetization of Fe
- 1.5-2 ps: antiferromagnetic coupling between Gd and Fe yields to reversing magnetization of Gd
 - > 2 ps: Recovery of magnetic moments due to cooling
- → All-optical switching of ferrimagnets!

Helicity-dependent AOS switching due to

- MCD effect (%-effect at off-resonance)
 + transfer of angular momentum?
- Inverse Faraday effect?

All-optical switching

 Is there all-optical switching for ferromagnetic materials?

 σ^+ σ^- L L

Multi-shot

SCIENCE sciencemag.org

12 SEPTEMBER 2014 • VOL 345 ISSUE 6202

MAGNETISM

All-optical control of ferromagnetic thin films and nanostructures

C.-H. Lambert et al., Science **345**, 1337 (2014).

Many open questions, like e.g.:

- Does deterministic single-pulse HD-AOS work in ferromagnets?
- If yes, for which parameters?
- Underlying mechanisms?
 - Inverse Faraday effect
 - MCD

What we are doing?

We had a beamtime at FLASH in December 2017 to tackle these questions!

Femtomagnetism PRL 110, 234801 (2013)

High X-ray fluences

Breakdown of the X-Ray Resonant Magnetic Scattering Signal during Intense Pulses of Extreme Ultraviolet Free-Electron-Laser Radiation

L. Müller,^{1,*} C. Gutt,^{1,2} B. Pfau,³ S. Schaffert,³ J. Geilhufe,⁴ F. Büttner,³ J. Mohanty,³ S. Flewett,³ R. Treusch,¹ S. Düsterer,¹ H. Redlin,¹ A. Al-Shemmary,¹ M. Hille,⁵ A. Kobs,⁵ R. Frömter,⁵ H. P. Oepen,⁵ B. Ziaja,^{1,2,6,7} N. Medvedev,^{1,6} S.-K. Son,^{1,6} R. Thiele,^{1,6} R. Santra,^{1,2,6,8} B. Vodungbo,⁹ J. Lüning,⁹ S. Eisebitt,^{3,4} and G. Grübel^{1,2}

What is happening at high X-ray fluences (λ = 20.8 nm, i.e., M-edge of Co)?

Experiment at FLASH (Free-electron Laser in Hamburg), pulse duration of ~100 fs

➔ Intra-pulse "quenching"/ breakdown of the resonant mSAXS signal

- → Violation of principle "diffract before destruct"
- → X-ray pulse does not only act as a non-invasive probe

- High X-ray fluences
 - Beam damage

EPL, **109** (2015) 17001 doi: 10.1209/0295-5075/109/17001 January 2015 www.epljournal.org

Femtosecond-laser-induced modifications in Co/Pt multilayers studied with tabletop resonant magnetic scattering

C. WEIER¹, R. ADAM¹, D. RUDOLF¹, R. FRÖMTER², P. GRYCHTOL³, G. WINKLER², A. KOBS², H. P. OEPEN², H. C. KAPTEYN³, M. M. MURNANE³ and C. M. SCHNEIDER¹

Single shot experiments
 Many membranes needed

Universität Hamburg Der Forschung i Der Lehre i Der Bildun

Femtomagnetism

- High X-ray fluences
- Fluence dependence of quenching (measured at FEL FERMI in Trieste, Italy)

High X-ray fluences

UΗ

Creation of X-Ray Transparency of Matter by Stimulated Elastic Forward Scattering

Müller et al., Phys. Rev. Lett. 110, 234801 (2013)

> THz dynamics

Idea and typical parameters

Off-resonant magnetization dynamics phase-locked to an intense phase-stable terahertz transient

C. Vicario¹, C. Ruchert¹, F. Ardana-Lamas^{1,2}, P. M. Derlet³, B. Tudu⁴, J. Luning⁴ and C. P. Hauri^{1,2*}

Coherent control of magnetization (magnetization can follow **B**-field of THz-pulse)

nature

photonics

Universität Hamburg DER FORSCHUNG I DER LEHRE I DER BILDUM

Femtomagnetism

UΗ

