

Methoden moderner Röntgenphysik: Streuung und Abbildung

Lecture 14	Vorlesung zum Haupt- oder Masterstudiengang Physik, SoSe 2018 G. Grübel, A. Philippi-Kobs, <u>F. Lehmkühler</u> , O. Seeck, L. Frenzel, M. Martins, W. Wurth		
Location	Lecture hall AP, Physics, Jungiusstraße		
Date	Tuesday Thursday	13:00 - 14:30 8:30 - 10:00	(starting 3.4.) (until 12.7.)

Soft Matter – Timeline

- Di 29.05.2018 Soft Matter studies I: Methods & experiments Definitions, complex liquids, colloids, storage ring and FEL experiments, setups, liquid jets, ...
- Do 30.05.2018 Soft Matter studies II: Structure
 SAXS & WAXS applications, X-ray cross correlations, ...
- Di 05.06.2018 Soft Matter studies III: Dynamics
 XPCS applications, diffusion, dynamical heterogeneities, ...
- Do 07.06.2018 cancelled!
- Di 12.06.2018 Case study I: Glass transition at DESY campus! Supercooled liquids, glasses vs. crystals, glass transition concepts, structure-dynamics relations, ... + DESY photon science site visit
- Do 14.06.2018 Case study II: Water
 Phase diagram, anomalies, crystalline and glassy forms, FEL
 studies, ...

DESY.

Methoden Moderner Röntgenphysik - Vorlesung im Haupt-/Masterstudiengang, Universität Hamburg, SoSe 2018

Small-angle X-ray scattering

Web of knowledge topic search: "Small angle X-ray scattering"

SAXS – Analysis methods: Formfactor

Lecture 7:
$$I_{SAXS}(Q) = (\rho_{sI,p} - \rho_{sI,0})^2 \left| \int_{V_p} e^{iQr} dV_p \right|^2$$
 for particle (p) in solvent (0)

Diluted case: Formfactors

- Spheres: $F(q) = 3 \frac{\sin(qR) qR\cos(qR)}{(qR)^3}$
- In general difficult to calculate \rightarrow numerical approaches
- Soft Matter: Polydispersity & (solvent) background

Methoden Moderner Röntgenphysik - Vorlesung im Haupt-/Masterstudiengang, Universität Hamburg, SoSe 2018

SAXS – Analysis methods: Formfactor

Ab initio methods (use "dummy" bead models) → BioSAXS

SAXS – Analysis methods: Structure factors

From lecture 5 (Kinematical Diffraction I): Structure factor of a liquid (or glass)

$$S(q) = 1 + \rho_0 \int_0^\infty \frac{4\pi r}{q} [g(r) - 1] \sin(qr) dr$$

With the radial pair correlation function g(r). This relates to the potential of mean force between two particles $U_{MF}(r)$

$$g(r) = \exp\left(-\frac{U_{MF}(r)}{k_B T}\right)$$

For very dilute systems $U_{MF}(r)$ equals the interaction potential U(r).

Relation of S(q) or g(r) and $U(r) \rightarrow$ **Ornstein-Zernike equation** relating total correlations $h(r) \equiv g(r) - 1$ to direct two-particle correlations c(r) and indirect correlations $c(|\mathbf{r} - \mathbf{r}'|)$

$$h(r) = c(r) + \rho_0 \int c(|\mathbf{r} - \mathbf{r}'|)h(|\mathbf{r}'|)d\mathbf{r}'$$

SAXS – Analysis methods: Structure factors

$$h(r) = c(r) + \rho_0 \int c(|\mathbf{r} - \mathbf{r}'|)h(|\mathbf{r}'|)d\mathbf{r}'$$

c(r) short range part

Can be solved using so-called "closure relations". Percus-Yevick closure:

$$c(r) = g(r) \left[1 - \exp\left(\frac{U(r)}{k_B T}\right) \right]$$

- → solves the hard-sphere potential $U_{HS}(r) = \begin{cases} \infty, r \leq 2R \\ 0, r > 2R \end{cases}$ analytically.
- → Mean-spherical approximation closure relation $c(r) = -\frac{U_{ES}(r)}{k_B T}$ solves electrostatic interactions (DLVO) [→ Lecture 13]

Hard spheres

- Volume fraction as only parameter
- Does not include crystallisation/glass transition!
- I.e. typically breaks down close to $\Phi \approx 0.5$

Sticky hard spheres

$$\frac{U_{SHS}(r)}{k_B T} = \begin{cases} 0, \\ \ln\left(\frac{12\tau\Delta}{\sigma+\Delta}\right) \\ 0, \end{cases}$$

 $r < \sigma$

$$\sigma \le r \le \sigma + \Delta$$

Structure factors – RMSA

Charge stabilized systems \rightarrow rescaled mean spherical approximation (RMSA)

Structure factor as function of Φ , charge, screening

High screening \rightarrow hard spheres

Example 1: Structure and Formfactors from charge stabilized colloids

PMMA spheres in water

Westermeier et al. JCP 137, 114504 (2012)

Example 2: High pressure studies

- Structure at high pressures → solid sample chambers (diamond windows)
- X-rays to penetrate diamond windows
- Functionalized core-shell particles at pressures up to 4 kbar: transition from repulsion to attraction (sticky hard spheres!)

a)

b)

1 bar

500 bar 1000 bar

0

Example 3: nucleation and growth of quantum dots

Combination of SAXS & XRD

→ cristallinity of nanoparticle

Example 4: Phase transitions in liquid crystals

Isotropic

Nematic

Smectic

Goethite [α -FeO(OH)] particles in water may form

- Isotropic •
- Nematic
- Smectic

Phases \rightarrow SAXS

Example 4: Phase transitions in liquid crystals

n

- **Disc-systems**
- (a) Discotic nematic phase
- (b) Hexagonal columnar phase
- (c) Rectangular columnar phase

Combined SAXS/WAXS from columnar phase

- SAXS: hexagonal intercolumnar order
- WAXS: disorder inside column

de Jeu: "Basic X-ray scattering for Soft Matter", 2016

Example 4: Phase transitions in liquid crystals

Liquid crystal phase of the system monoglyceride-water

de Jeu: "Basic X-ray scattering for Soft Matter", 2016

Further methods and applications

- Anomalous SAXS → ASAXS
- Scanning SAXS
- Phase transitions and self-assembly
- Time resolved techniques
- SAXS tomography
- BioSAXS
- ...

SAXS: 1D information (typically)

 \rightarrow How to make use of the 2D information obtained from a 2D scattering pattern?

 \rightarrow Angular correlations

1D information (standard SAXS)

• $I(\mathbf{q}) = \langle I(q, \varphi) \rangle_{\varphi} = I(q)$

2D information: Angular correlations

- $C(q, \Delta) = \frac{\langle I(q, \phi)I(q, \phi + \Delta) \rangle_{\phi} \langle I(q, \phi) \rangle_{\phi}^2}{\langle I(q, \phi) \rangle_{\phi}^2}$, i.e. correlations of fluctuations
- Coherent X-rays
- Two possibilities:
 - Solve structures in solution
 - Hidden symmetries

Reminder: coherent X-rays

- Correlations of speckles \rightarrow coherent X-rays
- Reminder: degree of coherence of partial coherent source \rightarrow speckle contrast $\beta = \frac{\sigma^2}{\langle I \rangle^2} = \frac{\operatorname{var}(I)}{\langle I \rangle^2} \le 1$
- Intensity follows Gamma distribution (Lecture 10)
- Low intensities \rightarrow Poisson noise \rightarrow Negative binomial probability function

$$P_{nb}(i) = \frac{\Gamma(i+M)}{\Gamma(M)\Gamma(i+1)} \left(1 + \frac{M}{\langle i \rangle}\right)^{-i} \left(1 + \frac{\langle i \rangle}{M}\right)^{-M}, \text{ with number of modes } M = \frac{1}{\beta}$$

⁾ Methoden Moderner Röntgenphysik - Vorlesung im Haupt-/Masterstudiengang, Universität Hamburg, SoSe 2018

Reminder: coherent X-rays

Excercise: Contrast calculation at low count rates

Consider coherent X-ray scattering experiment in transmission geometry (e.g. SAXS) with 2D detector on disordered sample of N identical particles

$$A_{j}(\mathbf{q}) = \int \rho_{j}(\mathbf{r})e^{i\mathbf{q}\mathbf{r}}d\mathbf{r} \to I(\mathbf{q}) = \sum_{j_{1},j_{2}=1}^{N} e^{i\mathbf{q}\mathbf{R}(j_{1},j_{2})}A_{j_{1}}^{*}(\mathbf{q})A_{j_{2}}(\mathbf{q})$$
$$= \sum_{j_{1},j_{2}=1}^{N} \int \int \rho_{j_{1}}^{*}(\mathbf{r}_{1})\rho_{j_{2}}(\mathbf{r}_{2})e^{i\mathbf{q}(\mathbf{R}(j_{1},j_{2})+\mathbf{r}_{21})}d\mathbf{r}_{1}d\mathbf{r}_{2}$$

Partially coherent illumination and dilute system (particles distance > coherence length) \rightarrow interparticle correlations can be neglected:

$$I(\mathbf{q}) = \sum_{j=1}^{N} I_j(\mathbf{q}) = \sum_{j=1}^{N} |A_j(\mathbf{q})|^2$$

Angular information: Fourier decomposition

$$I(\mathbf{q}) = I(q,\phi) = \sum_{l=-\infty}^{\infty} \hat{I}_{\ell}(q) e^{il\phi}; \quad \hat{I}_{\ell}(q) = \frac{1}{2\pi} \int_{0}^{2\pi} I(q,\phi) e^{-i\ell\phi} \, \mathrm{d}\phi$$

Now consider 2D disordered system in the dilute limit, e.g. pentagonal arrangement of particles (polar coordinates, R_0 radius of pentagon, $\theta_j = \frac{2\pi j}{r}$)

$$\rho(r,\theta) = \frac{\delta(r-R_0)}{R_0} \sum_{j=1}^5 \delta(\theta - \theta_j)$$

Expansion of scattering amplitude in Fourier series yields

$$A(q,\phi) = \sum_{\ell=-\infty} \hat{a}_{\ell}(q) e^{il\phi}$$
(1)

with Fourier coefficients

$$\hat{a}_{\ell}(q) = i^{-\ell} J_{\ell}(qR_0) \sum_{j=1}^{5} e_j^{il\theta_j}$$
(2)

- Pentagonal symmetry: only contribution if $\ell = 0 \mod 5$ in (2).
- Odd terms cancel out pairwise (e.g. $\ell = 5$ and $\ell = -5$) in (1) \rightarrow Friedel's law!
- Only contributions with $\ell = 0 \mod 10$
- $F_l(q) \propto J_\ell(qR_0) \rightarrow$ higher-order terms at large q

- Corresponding correlation function $C(q, \Delta) = \frac{\langle I(q,\phi)I(q,\phi+\Delta)\rangle_{\phi} \langle I(q,\phi)\rangle_{\phi}^2}{\langle I(q,\phi)\rangle_{\phi}^2}$ with Fourier coefficients $\hat{c}_{\ell}(q) = |\hat{I}_{\ell}(q)|^2$ (Wiener–Khinchin theorem)
- Correlations between different q possible

Adv. Chem. Phys. 161, 1 (2016)

• 3D systems: curvature of Ewald sphere \rightarrow odd symmetries

Hard-sphere glass

→ Hidden symmetries
 → Structural information beyond SAXS

PNAS 109, 11511 (2009)

XCCA & microscopy

Thin colloidal films

Orientational order with 500 nm resolution

IUCrJ 5, 354 (2018)

Liquid crystals

High number of symmetries \rightarrow strongly developed hexatic order

Measure of correlation length

XCCA to provide measure of degree of order and as order parameter for phase transitions

Adv. Chem. Phys. 161, 1 (2016)

XCCA – sample reconstruction

