## Excercises „Methoden Moderner Röntgenphysik II"

## - Crystal Truncation Rods -

In Born-Approximation, the x-ray amplitude scattered by a crystal is given by

$$
A(\vec{q}) \propto S(\vec{q}) \sum_{n_{1}=-M_{1}}^{N_{1}-1} \sum_{n_{2}=-M_{2}}^{N_{2}-1} \sum_{n_{3}=-M_{3}}^{N_{3}-1} \exp \left(i \vec{q} \cdot\left[n_{1} \vec{a}+n_{2} \vec{b}+n_{3} \vec{c}\right]\right)
$$

with the structure factor $S(\vec{q})$ the wave vector transfer $\vec{q}$ and the unit cell vectors $\vec{a}, \vec{b}, \vec{c}$. At infinity crystals all $M_{k}$ and $N_{k}$ are equal to infinity. At semi-finite crystals with a surface e.g. in the $\vec{a}, \vec{b}$-plane $M_{3}$ is a finite number e.g. $M_{3}=0$. For a cubic crystal and a variation of $\vec{q}$ along $\vec{c}$ (the $z$-axis) the $\vec{a}$ - and $\vec{b}$-directions can be neglected. The problem becomes 1 dimensional.

1) Calculate the scattered intensity $I\left(q_{z}\right)$ of the Crystal Truncation Rod CTR for the 1-dimensional semi-infinity crystal with the interface at $M_{3}=0$ and finite but very large $N_{3}$.

Use $\quad I\left(q_{z}\right)=\left|A\left(q_{z}\right)\right|^{2} \quad$ and $\quad \sum_{n=0}^{N-1} x^{n}=\frac{x^{N / 2}-x^{-N / 2}}{x^{1 / 2}-x^{-1 / 2}} \cdot x^{\frac{N-1}{2}}$
2) Make a sketch of $I\left(q_{z}\right)$ and explain the problems for $N_{3} \rightarrow \infty$.

Introducing an absorption depth for the x-rays makes the calculations more realistic. The intensity of the x-rays in the depth $z$ in an absorbing material follows $I(z)=I_{0} \exp (-z / \Lambda)$ with the absorption length $\Lambda$.
3) Modify the scattered amplitude $A\left(q_{z}\right)$ of the Crystal Truncation Rod CTR for the 1-dimensional semi-infinity crystal with the interface at $M_{3}=0$ introducing the absorption effects to each of the components of the sum.
4) Using $\quad N_{3}|\vec{c}| \gg \Lambda$ and $|\vec{c}| \ll \Lambda$ (which is both usually the case) calculate the scattered intensity $I\left(q_{z}\right)$ of the Crystal Truncation Rod CTR for the 1-dimensional semi-infinity crystal with the interface at $M_{3}=0$ and finite but very large $N_{3}$ including absorption. Make a sketch and compare with the sketch of 2 ).

## - X-Ray Reflectivity -

In Born-Approximation, the x-ray intensity reflected by a surface is given by

$$
\left.I\left(q_{z}\right) \propto \frac{1}{q_{z}^{4}} \int_{-\infty}^{\infty} \frac{d \rho(z)}{d z} \exp \left(i q_{z} z\right) d z\right|^{2}
$$

with the wave vector transfer $q_{z}$ along $z$ and the electron density profile $\rho(z)$ along $z$.

1) Calculate the reflected intensity of the following "sample surface with steps" by first generating the function $d \rho(z) / d z$ averaged over $x$.

2) Compare the result with a reflectivity of a one-layer system with substrate density $\rho_{0}$, film density $\rho_{0} / 2$ and film thickness $d$.

At a synchrotron radiation source such as PETRA at DESY the emitted x-radiation exhibit a photon energy spectrum $I_{\text {PETRA }}(E)$. At some user-specified photon energy $E_{0}$ with maximum photon flux this function also has maxima at $E_{0} / 3, E_{0} / 5$, and so on. These socalled harmonics have to be suppressed before the experiment. This can be done by x-ray mirrors
3) Design a "harmonic suppressor" for x-ray beams. Draw a principle sketch and explain how it works. Use the fact that matter has a refractive index $n=1-\delta(\lambda)$.
4) Estimate the suppression factor for the $3^{\text {rd }}$ harmonic $E_{0} / 3$ using that $\delta \propto \lambda^{2}$ and that the incident angle is $\alpha \ll 1$. Compare the suppression with the typical flux of $10^{8}$ photons per second for the $3^{\text {rd }}$ harmonic.

