1) Calculate the form factor of a cylinder.
2) Calculate the Porod constant Q for a two phase system (density ρ_{M}, ρ_{P}, and concentration of the particles Φ).
3) SAXS resolution
a) Show how the SAXS resolution depends on wavelength, beam size and SDD.
b) Assume a perfectly collimated beam and perfect slits, which is the remaining parameter (not considered in a)) which determines the SAXS resolution? Hint: Consider focusing on the detector.
4) Consider the following sketch of a thin polymer film. Red and blue sketch two polymer materials, e.g. PS and
 PMMA.
a) Calculate the approximate critical angle for the typical polymers mentioned. We assume $\lambda=$ 1 Å.
b) Vary the incident angle and sketch qualitatively the corresponding GISAXS pattern for three characteristic situations.
c) Concerning the SAXS resolution, what do you expect for SDD=1m, $4 \mathrm{~m}, 13 \mathrm{~m}$? Sketch the corresponding GISAXS pattern for the same detector.
5) The following figure sketches schematically part of the GISAXS signal of a distribution of polymeric droplets on a surface [adapted from müller-Buschbaum et al. J. Appl. Cryst. (2007). 40, s341s345]. The size of a droplet is approximately $13 \mu \mathrm{~m}$.

a) Draw a guide to the eye
to the data.
b) Determine approximatively the GISAXS resolution. Assume, that the beam size corresponds to one detector pixel.
c) A second structure is present. Determine its length scale.
d) Draw a sketch of the polymer thin film in real space.
