Methoden moderner Röntgenphysik II

Streuung und Abbildung

Stephan V. Roth stephan.roth@desy.de DESY 07.06.2016

Bachelor-/Masterarbeiten

im Bereich Nanowissenschaften und Materialien für

Wenn Ihr Lust habt, in einem internationalen Team aus Physikern, Chemikern und Informatikern mitzuarbeiten, freuen wir uns auf Euch!

Themenbereiche sind:

- Sputterdeposition von organischen und metallischen Nanostrukturen
- Sprühbeschichtung und Gießtechniken (,solution casting')
- Charakterisierung verschieden hergestellter Nanostrukturen, z.B. mittels Rasterkraftmikroskopie, Ellipsometrie, Kontaktwinkelmessungen und Röntgenstreuung
- Aufbau und Durchführung von Echtzeitexperimenten am Synchrotron
- Simulation und Modellierung von in-situ Streuexperimenten

Outline

- Thin films →Grazing incidence SAXS : A Primer
- > Nanostructuring by annealing
- > The highest resolution

T-SAXS vs. GISAXS

- Easy measurement
- Easy analysis
- In-plane information (q_y, q_z)
- Any possible scattering from substrate
- Transparency of substrate
- High energy

- Strong intensity

Si

- Easy preparation of samples
- Full information (q_x, q_v, q_z)
- Scattering from surface / internal structure
- Scattering from reflected AND transmitted beam
- Refraction effects (DWBA)

Stephan V. Roth | Moderne Methoden der Röntgenphysik II | 07.06.2016 | Page 4

Grazing incidence small-angle x-ray scattering

Snell's law and the Fresnel equations (1) (see 10.4.2014)

 $\psi_{I} = a_{I}e^{i\mathbf{k}_{I}\cdot\mathbf{r}}$ $\eta = 1$ $\varphi_{R} = a_{R}e^{i\mathbf{k}_{R}\cdot\mathbf{r}}$ $\psi_{R} = a_{R}e^{i\mathbf{k}_{R}\cdot\mathbf{r}}$ $\varphi_{R} = a_{R}e^{i\mathbf{k}_{R}\cdot\mathbf{r}}$ $\varphi_{R} = a_{R}e^{i\mathbf{k}_{R}\cdot\mathbf{r}}$ $\varphi_{R} = a_{R}e^{i\mathbf{k}_{R}\cdot\mathbf{r}}$ $\psi_{T} = a_{T}e^{i\mathbf{k}_{T}\cdot\mathbf{r}}$ $\psi_{T} = a_{T}e^{i\mathbf{k}_{T}\cdot\mathbf{r}}$

 $k = |\mathbf{k}_{||} = |\mathbf{k}_{|||}$

||:
$$a_1k\cos\alpha + a_Rk\cos\alpha = a_T(nk)\cos\alpha'$$
 (B')
|: $-(a_1 - a_R)k\sin\alpha = -a_T(nk)\sin\alpha'$ (B'')
 $\cos\alpha = n\cos\alpha'$ (B' +A)
 $\alpha, \alpha' \text{ small:} (\cos z = 1 - z^2/2)$
 $\alpha^2 = \alpha'^2 + 2\delta - 2i\beta$
 $= \alpha'^2 + \alpha_c^2 - 2i\beta$ (C)

Require that the wave and its derivative is continuous at the interface:

$$\mathbf{a}_{\mathrm{I}} + \mathbf{a}_{\mathrm{R}} = \mathbf{a}_{\mathrm{T}}$$
 (A)
 $\mathbf{a}_{\mathrm{I}}\mathbf{k}_{\mathrm{I}} + \mathbf{a}_{\mathrm{R}}\mathbf{k}_{\mathrm{R}} = \mathbf{a}_{\mathrm{T}}\mathbf{k}_{\mathrm{T}}$ (B)

 $a_I - a_R / a_I + a_R = n(sin\alpha'/sin\alpha) \approx \alpha'/\alpha$ (B"+A)

Fresnel equations:

$$r = a_R / a_I = (\alpha - \alpha') / (\alpha + \alpha')$$
$$t = a_T / a_I = 2\alpha / (\alpha + \alpha')$$
r: reflectivity t: transmittivity

Stephan V. Roth | Moderne Methoden der Röntgenphysik II | 07.06.2016 | Page 6

Snell's law and the Fresnel equations (2) (see 10.4.2014)

$$b_{u} = (2k/Q_{c})\beta = (4k^{2}/Q_{c}^{2})\mu/2k = 2k\mu/Q_{c}^{2}$$
$$Q_{c} = 2k\alpha_{c} = 2k \text{ sqrt}(2\delta)$$

Snell's law and the Fresnel equations (4) (see 10.4.2014)

Total reflection – Yoneda peak

> Refractive Index for X-rays $n = 1 - \delta + i\beta$

- Real part: $1 \delta = 1 \frac{\lambda^2}{2\pi} r_0 \rho_e$; $\rho_e = NZ$ N = Number density of atoms, Z = Atomic number
- Imaginary Part: $\beta = \frac{\lambda}{4\pi}\mu$
- > Snell's Law / Total reflection: $\alpha_c = \sqrt{2\delta} \sim \sqrt{\rho}$
- > Maximum of the Fresnel transmission function
- > Electrical field on surface: $2xE_i$
- > Increased scattering at surface
- > Yoneda peak [Yoneda, 1963]
 - Occurs when $\alpha_{i,f} = \alpha_c$
- > Material sensitive

Stephan V. Roth | Moderne Methoden der Röntgenphysik II | 07.06.2016 | Page 9

GISAXS: Tuning of penetration depth

> Scattering depth:

$$\Lambda = \frac{\lambda}{\sqrt{2}\pi} * \frac{1}{\sqrt{\sqrt{(\alpha_i^2 - \alpha_c^2)^2 + 4\beta^2} - (\alpha_i^2 - \alpha_c^2)}}$$

> Tune depth sensitivity

- Easy preparation of samples
- Full information (q_x, q_v, q_z)
- Scattering from surface / internal structure
- Scattering from reflected AND transmitted beam
- Refraction effects (DWBA)

Stephan V. Roth | Moderne Methoden der Röntgenphysik II | 07.06.2016 | Page 10

History

> 1963	Yoneda	Anomalous Surface Reflection of X-Rays	
> 1988	Sinha et al.	surface roughness	
> 1989	Levine et. al.	simple qualitative analysis	
> 1995	Lairson et. al.	GISAXS with a 1D-Detector	
> 1995	Rauscher et. al.	Theory of GISAXS in DWBA	
> 1996	Müller-Buschbaum et. al.	GIUSAXS on soft matter: DESY	
> 1999	Kegel et. al.	GISAXS on semiconductors quantum dots	
> 2002	Lazzari	IsGISAXS	
> Since 2003	Müller-B., Roth et. al.	Micro-/nanoGISAXS: ESRF / DESY	

BW4, CCD Au d=5nm t=3h T=300°C

tephan V. Roth | Moderne Methoden der Röntgenphysik II | 07.06.2016 | Page 11

History

> 1963 Yoneda – anomalous Scattering below α_i

PHYSICAL REVIEW

VOLUME 131, NUMBER 5

1 SEPTEMBER 1963

Anomalous Surface Reflection of X Rays

Y. YONEDA

Department of Applied Physics, Faculty of Engineering, Kyushu University, Fukuoka, Japan (Received 9 January 1963; revised manuscript received 2 May 1963)

The first sucessful experiment

FIG. 1. Schematic view of the experimental arrangement in the incident plane.

> Anomalous Surface Reflection (diffuse scattering)

Intensity between $\alpha_f = 0^\circ$ and $\alpha_f = \alpha_i !!!$

Yoneda, Phys. Rev. 131, 2010 (1963)

Refractive index for x-rays

 $\lambda \approx 1 \mathring{A} \Longrightarrow \delta \sim 10^{-7} ... 10^{-6}$

Very small!

Matter: |n(X-rays)|<1 optically less dense than vacuum (remember Bragg's law)

Stephan V. Roth | Moderne Methoden der Röntgenphysik II | 07.06.2016 | Page 14

Origin of intensity at α_c

 $\alpha_{f}(Au) = 0.56^{\circ} = \alpha_{c}(Au, 1.8\text{\AA})$

Total external reflection

Reciprocity theorem & critical angle

must stem from wave parallel to surface

Yoneda, Phys. Rev. 131, 2010 (1963)

Yoneda peak = Scattering effect!

Basically the same

1963

Theory

- coherent interference between four waves along α_f
- each term weighted with the Fresnel coefficients
- cross section just depends on q_y and q_z

Theory - Simulation

Cross section (particle form factor * interference function)

Manual IsGISAXS

Simulations: IsGISAXS (R. Lazzari)

$$I(q_y,q_z) = c P(q_y,q_z) \times S(q_y)$$

Grazing incidence small-angle x-ray scattering

GISAXS – A Primer

Resonant diffuse scattering (RDS)

Correlated roughness $\Delta q_z = 2\pi / d_{corr}$

Application of penetration depth

> Preservation of morphology of a self-encapsulated thin titania film

> Self-assembly, dip-, spin-, sputter-, spray-coating, fluidic, vacuum deposition

Stepnan V. Kotn | Woderne Wetnoden der Kontgenpnysik II | 07.06.2016 | Page 25

Outline

- > Thin films → Grazing incidence SAXS : A Primer
 - Nanostructuring by annealing
- > The highest resolution

Annealing

- > Au on glass
- > Parameters:
 - Au layer mass thickness: 3nm , 5nm, 8nm
 - Annealing time

approaching critical coalescence thickness (cluster -> metal character)

Plasmon resonance

Stephan V. Roth | Moderne Methoden der Röntgenphysik II | 07.06.2016 | Page 28 J.C. Hulteen et al., J Phys. Chem. B 101, 7727 (1997)

Surface coverage

> Thickness Au 8nm

Roth et al., "Gold nanoparticle thin films on glass: Influence of film thickness and annealing time", in: "Synchrotron Radiation and Structural Proteomics", Pan Stanford Series on Nanobiotechnology - Volume 2, Eds.: E. Pechkova and C. Riekel (2010)

Cluster distance

GISAXS and GIUSAXS

> Combination of GIUSAXS and GISAXS experiment at same ai

Outline

- > Thin films → Grazing incidence SAXS : A Primer
- > Nanostructuring by annealing
 - The highest resolution

The highest resolution...

Following Salditt et al., Z. Phys. B 96 (1994) 227: Use grids!

...some analogons...

...and at BW4: Polymeric nanochannels

Snell's law and the Fresnel equations (3) (see 10.4.2014)

use table to extract μ , ρ , f' yielding Q_c

and calculate b_u

use (D):
$$q^2 = q'^2 + 1 - 2 ib_u$$

1.0	Z	Molar density	Mass density	ρ	Q_c	$\mu \times 10^6$	b_{μ}
		(g/mole)	(g/cm^3)	$(e/\text{\AA}^3)$	$(1/\text{\AA})$	$(1/\text{\AA})$	
С	6	12.01	2.26	0.680	0.031	0.104	0.0009
Si	14	28.09	2.33	0.699	0.032	1.399	0.0115
Ge	32	72.59	5.32	1.412	0.045	3.752	0.0153
Ag	47	107.87	10.50	2.755	0.063	22.128	0.0462
W	74	183.85	19.30	4.678	0.081	33.235	0.0409
Au	79	196.97	19.32	4.666	0.081	40.108	0.0495

<u>get:</u>

 $\begin{aligned} r(q) &= (q-q') / (q+q') \\ t(q) &= 2q / (q+q') \\ \Lambda(q) &= 1 / Q_c Im(q') \end{aligned}$

