Methoden moderner Röntgenphysik II

Streuung und Abbildung

Stephan V. Roth DESY 12.05.2015

- > 12.05.: Small-Angle X-ray Scattering (SAXS)
- > 19.05.: SAXS
- > 21.05.: Applications of SAXS
- > 02.06.: Grazing incidence SAXS (GISAXS)
- > 04.06.: The polymer-metal interface application of GISAXS
 On the route to organic electronics

SAXS continued

Illustration

> USAXS at photonic crystals

> USAXS in highly concentrated colloidal suspensions

Courtesy: V. Boyko (BASF)

> SAXS – Introduction

Instrumentation

- P03/MiNaXS @ PETRA III
- > Bulk materials -> Transmission U/SAXS:
 - Porous materials
 - Ni-base superalloys
 - Droplet drying
 - Chocolate

SAXS collimation and scattering geometry

Stephan V. Roth | Moderne Methoden der Röntgenphysik II | 12.05.2015 | Page 6

Layout – Different µfocussing schemes

- > Flexible choice of beam size and divergence
- > Fixed focal spot position and size

> Full user operation within design values!

Rapid Change (GI)SAXS / (GI)WAXS – 2012

- > Adjust scattering angles
 ↔ dΩ
 ↔q-ranges
- > 5cm<D_{SD}<8.6m
- > Highly flexible
- > Separate WAXS device

Stephan V. Roth | Moderne Methoden der Röntgenp

µUSAXS focus

- > Beam size: 32x23µm²
- > SDD=8470mm
- > N₂=12
- > PS particles:
 - 400nm
 - Dried on glass slide
 - t_{acq}=1s
 - background corrected

- > SAXS Introduction
- > Instrumentation
 - P03/MiNaXS @ PETRA III
- > Bulk materials -> Transmission U/SAXS:
 - Porous materials
 - Ni-base superalloys
 - Droplet drying
 - Chocolate

Aerogels

- > Highly porous materials:
 - OLED: matching of refractive indices
 - molecular sieves
 - sensors
- > Challenges
 - Generation of pores with dimensions greater than 100 nm, yet submicron
 - Characterization of size

Quantitative analysis

- > Bimodal distribution particles
- > I(Q) = $\Delta \varrho^2 N \int_0^\infty V_P^2(R) P(R) * D(R) dR$
- > Porod law:
 - Particle size ~ 30nm
 - Pore size estimate >1300nm

- > SAXS Introduction
- > Instrumentation
 - P03/MiNaXS @ PETRA III
- > Bulk materials -> Transmission U/SAXS:
 - Porous materials
 - Ni-base superalloys
 - Droplet drying
 - Chocolate

Ni-base superalloys

> Ni-base W-rich experimental single crystal superalloy (Ni-4.6AI-6.4Ta-5.7Cr-10.8W-2.1Mo)

γ

- > Ni-Al solid solution *Matrix* (γ), fcc
- > *Precipitates* ($\gamma' \rightarrow AI,...$), Ni₃(AI,Ti)
- > TEM: γ '-precipitates R > 50 nm
- > D > 100 nm

Local precipate morphology – µSAXS

 σ phase precipitate:
 embrittlement of alloy
 crack formation and propagation

[320] [100] **G=1.5 nm**⁻¹ Â M⁻¹ A C

 $\overrightarrow{k_0} \downarrow [001]$

 $\Delta y = 5 \,\mu m$

E

Microfocus: local γ '- particle size distribution

- > SAXS Introduction
- > Instrumentation
 - P03/MiNaXS @ PETRA III
- > Bulk materials -> Transmission U/SAXS:
 - Porous materials
 - Ni-base superalloys

- Droplet drying
- Chocolate

The drying droplet

- > Self-organisation: attractive capillary forces
- > correlated nano-structures
- > industrial processes
 - spray drying (see also GISAXS part)
 - food processing, pharmaceuticals
 - Paintings/coatings

Stephan V. Roth | Moderne Methoden der Röntgenphysik II | 12.05.2015 | Page 19

Wir machen ein Experiment

- > Der trocknende Tropfen
- > Wandfarbe!
- > Haftung!
- > pPS Glassubtrate

Porod Invariant - practical application

> Colloidal solution: drying thick droplet

Chen et al., Soft Matter 8, 12093 (2012)

The drying droplet

- > Microbeam: local concentration
- > Q~ $\phi(1-\phi)(R^2-x^2)^{0.5}$
- > Dried droplet: different gradient in ϕ
- > Homogenous distribution
- > Agglomeration in shell
- > Continuous gradient

The drying droplet – part 2

- > Slow / fast drying
- > Concentration of colloids:
 - Arresting of colloids
 - Homogenous
 - Core shell effect (,coffee ring')
- > Follow concentration profile in-situ

- > SAXS Introduction
- > Instrumentation
 - P03/MiNaXS @ PETRA III
- > Bulk materials -> Transmission U/SAXS:
 - Porous materials
 - Ni-base superalloys
 - Droplet drying
 - Chocolate

- > A real multicomponent system
- > Nestlé, TU HH, DESY
- Fat Blooming pathways

Continuous fat phase:

- Cocoa solids
 - Sucrose
 - Milk powder
 - Lecithin

Stephan V. Roth | Moderne Methoden der Röntgenphysik II | 12.05.2015 | Page 25

c)

Stephan V. Roth | Moderne Methoden der Röntgenphysik II | 12.05.2015 | Page 26

DESY

Stephan V. Roth | Moderne Methoden der Röntgenphysik II | 12.05.2015 | Page 27

DESY

> Migration: filling of voids by oil: Q decreases

Stephan V. Roth | Moderne Methoden der Röntgenphysik II | 12.05.2015 | Page 28

DESY

Skim milk powder

- > Peak intensities
- > Pores, cracks: capillary effect
- > Then: "chemical migration through the fat phase by softening and partial dissolution of the crystalline cocoa butter."
- reduction of porosity and a minimization of defects
- > a reduced content of noncrystallized liquid cocoa butter

> b or c

