Coherence of light and matter: from basic concepts to modern applications Part II Script 2

> Vorlesung im GrK 1355 WS 2013 A. Hemmerich & G. Grübel

Location: SemRm 052, Gebäude 69, Bahrenfeld Thursdays 12.15 – 13.45

G.Grübel (GR), A.Hemmerich (HE)

Literature

Basic concepts: The quantum theory of light Rodney Loudon, Oxford University Press (1990) Quantum Optics Marlan O. Scully, M. Suhal Zubairy, Cambridge University Press (1997) Dynamic Light Scattering with Applications B.J. Berne and R. Pecora, John Wiley&Sons (1976) Elements of Modern X-Ray Physics J. A. Nielsen and D. McMorrow, J. Wiley&Sons (2001)

Matter Waves: Bose-Einstein Condensation in Dilute Gases C. J. Pethick and H. Smith, Cambridge University Press (2002)

Lecture Notes

Part I:	http://photon.physnet.uni-hamburg.de/fileadmin/user_upload/ILP/						
	Hemmerich/teaching.html/Coherence.pdf						
Part II:	http://photon-science.desy.de/research/studentsteaching/						
	lecturesseminars/ws_13_14/coherence_of_light_grk1355/						

Coherence of light and matter: from basic concepts to modern applications Part II: G. Grübel

Coherence based X-ray techniques

Overview, Introduction to X-ray Scattering, Sources of Coherent X-rays, Speckle pattern and their analysis

Imaging techniques

Phase Retrieval, Sampling Theory, Reconstruction of Oversampled Data, Fourier Transform Holography, Applications

X-ray Photon Correlation Spectroscopy (XPCS)

Introduction, Equilibrium Dynamics (Brownian Motion), Surface Dynamics, Non-Equilibrium Dynamics

Imaging and XPCS at FEL Sources

Introduction: Experimental Set-Up

Introduction: Scattering with coherent X-rays

If coherent light is scattered from a disordered system it gives rise to a random (grainy) diffraction pattern, known as "speckle". A speckle pattern is an interference pattern and related to the exact spatial arrangement of the scatterers in the disordered system.

$$I(Q,t) \sim S_c(Q,t) \sim |\sum e^{iQRj(t)}|^2$$

j in coherence volume c= $\xi_t^2 \xi_1$

Incoherent Light:

 $S(Q,t) = \langle S_c(Q,t) \rangle_{V>>c}$ ensemble average

Coherence based X-ray techniques:

An X-ray Scattering Primer

Scattering of X-rays: A primer

consider a monochromatic plane (electromagnetic) wave with wavevector k:

with $|\mathbf{k}|=2\pi/\lambda$, $\lambda[\text{Å}]=\text{hc/E}$, $\omega=2\pi/\nu$ $\mathbf{E}(\mathbf{r},t) = \mathbf{\epsilon} \operatorname{Eo} \exp\{i(\mathbf{kr}-\omega t)\}$ elastic scattering: K' Q ħ k' =ħ k+ħQ k Scattering by a single electron: $E_{rad}(R,t)/E_{in} =$ $-(e^2/4\pi\epsilon_m c^2)exp(ikR)/R \cos\psi$ spherical wave thomson scattering length r_o v (=2.82*10⁻⁵ Å)

- Scattering from an atom:

scattering amplitude of an atom = atomic form factor $f_0(Q)$ [in units of r_0]

 $\rho(r)$: electronic number density = charge density

$$f_0(\mathbf{Q}) = \int \rho(\mathbf{r}) \exp(i\mathbf{Q}\mathbf{r}) d\mathbf{r}$$

$$= \begin{bmatrix} Z & Q \rightarrow 0 \\ 0 & Q \rightarrow \infty \end{bmatrix}$$

1250					8		90 (MAR)		
	a_1	b_1	a_2	b_2	a_3	b_3	a_4	b_4	С
С	2.3100	20.8439	1.0200	10.2075	1.5886	0.5687	0.8650	51.6512	0.2156
0	3.0485	13.2771	2.2868	5.7011	1.5463	0.3239	0.8670	32.9089	0.2508
F	3.5392	10.2825	2.6412	4.2944	1.5170	0.2615	1.0243	26.1476	0.2776
Si	6.2915	2.4386	3.0353	32.333	1.9891	0.6785	1.5410	81.6937	1.1407
Cu	13.338	3.5828	7.1676	0.2470	5.6158	11.3966	1.6735	64.820	1.5910
Ge	16.0816	2.8509	6.3747	0.2516	3.7068	11.4468	3.683	54.7625	2.1313
Mo	3.7025	0.2772	17.236	1.0958	12.8876	11.004	3.7429	61.6584	4.3875

table 4.1: J. Als-Nielsen & D. McMorrow

note: atomic form factor is FT of electronic charge distribution

 $f_0(Q/4\pi)$ tabulated:

 $\mathsf{f_0}(\mathsf{Q}/4\pi)$ = $\sum_{j=1}^4 a_j \exp{-b_j(\mathsf{Q}/4\pi)^2} + c$

<u>note:</u>

 $f = f_0(Q) + f' + f''$

corrections f' and f" arise from the fact that the electrons are bound in the atom Scattering from a molecule:

scattering by a crystal:

$$\mathbf{r}_{j'} = \mathbf{R}_{n} + \mathbf{r}_{j}$$

lattice vector + atomic position in lattice

$$F^{crystal}(Q) = \sum_{rj} f_j(Q) \exp(iQr_j) \sum_{Rn} \exp(iQR_n)$$

unit cell structure factor lattice sum

 $I_{s} = r_{o}^{2} F(Q) F^{*}(Q) P$

lattice sum = phase factor of order unity or N (number of unit cells) if

 $Q \bullet R_n = 2\pi x \text{ integer } (\$)$

evaluation of lattice sums:

construct reciprocal space such that:

reciprocal lattice such that

 $a_i \bullet a_j^* = 2\pi \,\delta ij$ with a_i defining aG = h a_1^* + k a_2^* + l a_3^*

and G fullfills (\$) for Q = G (Laue condition)

k + Q = k' Ewald sphere

 $sin (\theta/2) = (Q/2) / k$ Laue condition = Bragg's law

lattice sum:

 $|\Sigma_{Rn} \exp(iQR_n)|^2 \rightarrow N v_c^* \delta (Q-G)$ N number of unit cells; v_c^* unit cell volume in reciprocal space

construction of reciprocal space:

(real space lattice constants a_1 , a_2 , a_3);

$$v_{c} = a_{1} \bullet (a_{2} \times a_{3})$$

 $a_1^* = 2\pi/v_c (a_2 x a_3)$ $a_2^* = 2\pi/v_c (a_3 x a_1)$ $a_3^* = 2\pi/v_c (a_1 x a_2)$

The unit cell structure factor

 $F^{uc}(Q) = \sum_{rj} F_j^{mol}(Q) \exp(iQr_j)$

example: fcc lattice (use conventional cubic unit cell) $r_1 = 0, r_2 = \frac{1}{2} a (\underline{y} + \underline{z}), r_3 = \frac{1}{2} a (\underline{z} + \underline{x}), r_4 = \frac{1}{2} a (\underline{x} + \underline{y})$ $G = ha_1^* + ka_2^* + la_3^*$ $a_1^* = 2\pi/v_c (a_2 x a_3) = 2\pi/a^3 [a_2 x a_2] = 2\pi/a [y x z] = 2\pi/a x$ $a_2^* = 2\pi/v_c (a_2 x a_3) = 2\pi/a^3 [a\underline{z} \times a\underline{x}] = 2\pi/a [\underline{z} \times \underline{x}] = 2\pi/a \underline{y}$ $a_3^* = 2\pi/v_c (a_2 x a_3) = 2\pi/a^3 [a x a y] = 2\pi/a [x x y] = 2\pi/a z$ $v_{c} = a1 \bullet (a_{2} \times a_{3})$ $G \bullet r_1 = 2\pi/a (hx + ky + lz) \bullet 0$ = 0 $G \bullet r_2 = 2\pi/a \left(h\underline{x} + k\underline{y} + l\underline{z} \right) \bullet 1/2a(\underline{y} + \underline{z})$ $= \pi (k+l)$ $G \bullet r_3 = 2\pi/a \left(h\underline{x} + k\underline{y} + l\underline{z} \right) \bullet 1/2a(\underline{z} + \underline{x})$ $= \pi (h+l)$ $G \bullet r_{a} = 2\pi/a \left(h\underline{x} + k\underline{y} + l\underline{z} \right) \bullet 1/2a(\underline{x} + \underline{y})$ $= \pi (h+k)$

The unit cell structure factor for a fcc lattice

 $\mathsf{F}_{\mathsf{hkl}}^{\mathsf{fcc}}(\mathbf{Q}) = \sum_{j=1-4} \mathsf{f}(\mathbf{Q}) \exp(\mathsf{i}\mathbf{Q}\mathsf{r}_j) = \mathsf{f}(\mathbf{Q}) \left[\exp(\mathsf{i}\mathbf{G}\mathsf{r}_1) + \dots \exp(\mathsf{i}\mathbf{G}\mathsf{r}_4) \right]$

 $F_{hkl} fcc(Q) = f(Q) [1 + exp(i\pi(k+l)) + exp(i\pi(h+l)) + exp(i\pi(h+k))]$

$$\mathsf{I}_{\mathsf{hkl}}^{\mathsf{fcc}}(\mathbf{Q}) = \mathsf{F}(\mathbf{Q}) \bullet \mathsf{F}^*(\mathbf{Q})$$

<u>Reflections:</u> 100 forbidden 111 allowed 200 allowed

Coherence based X-ray techniques:

Sources of Coherent X-rays

- Sources of X-Rays
- 1895 discovered by W.C. Röntgen
- 1912 First diffraction experiment (v. Laue)
- 1912 Coolidge tube (W.D. Coolidge,GE)
- 1946 Radiation from electrons in a synchrotron, GE, Physical Review, 71,829(1947)

• A storage ring facility

Synchrotron Radiation Primer

Energy E_e of an electron at speed v:

 $E_e = mc^2/sqrt\{(1-(v/c)^2\} = \gamma mc^2$

For 5GeV and mc²=0.511 MeV get $\gamma\approx 10^4$

 $\label{eq:rho} \begin{array}{l} \hline Centrifugal=Lorentz \mbox{ force yields for radius:} \\ \rho = \gamma mc \slashed{eB} = 3.3 \mbox{ E[GeV]/B[T]} \approx 25 \mbox{ m} \\ \mbox{ E}_e \approx 6 \mbox{ GeV, B=0.8 T} \end{array}$

Opening angle is of order $1/\gamma \approx 0.1~mrad$

Bending magnets

<u>Characteristic energy $\hbar \omega_c$ for bend or wiggler:</u> $\hbar \omega_c$ [keV] = 0.665 E_e²[GeV] B(T) ≈20 keV

 $Flux \sim E^2$

Photon Energy/Characteristic Energy

Energy loss by synchrotron radiation per turn: $\Delta E [keV] = 88.5 E^{4}[GeV]/\rho[m]$

For 1 GeV and ρ =3.33 m: ΔE =26.6 keV/turn For I=500 mA = 0.5 Cb/s =0.5x6.25x10¹⁸ e⁻/s \rightarrow P= 0.5x6.25x10¹⁸ e⁻/sx26.6 keV =8.3125x10²²x1.6x10⁻¹⁹ = 13.3 KJ/s =13.3 KW

Insertion Devices (wigglers and undulators)

(b) Undulator

Wiggler:

 $P[kW] = 0.633E_e^2[GeV] B^2[T] L[m] I[A]$

 $Flux \sim E^2 x N$

N: number poles

Undulator:

 $k = eB / mc k_u = 0.934 \lambda_u [cm] Bo[T]$

with λ_u undulator period <u>undulator fundamental:</u> $\lambda_0 = \lambda_u/2\gamma^2 \{(1 + k^2/2 + (\gamma_0))\}$ on axis Flux ~ E² x N² <u>bandwidth:</u> $\Lambda\lambda/\lambda \sim 1/nN$ • A Free Electron Laser (FEL)

Synchrotron and FEL sources

Coherence parameters of an undulator source

 $\begin{array}{ll} \hline Coherent \ Flux: \\ Fc &= (\lambda/2)^2 \bullet B \\ &= 3.5 \bullet 10^{10} \ ph/s \\ B=10^{20} \ ph/s/mm^2/mrad^2/0.1\% bw \\ &\Delta\lambda/\lambda = 10^{-4}; \ \lambda = 1 \text{\AA} \\ \hline \hline Temporal \ Coherence: \\ \ londitudinal \ coherence \ length \\ \xi_l &= \lambda(\lambda/\Delta\lambda) = 1 \ \mu m \\ &\Delta\lambda/\lambda = 10^{-4}; \ \lambda = 1 \ \text{\AA} \end{array}$

Transverse coherence length:

 $\xi_t^2 \bullet \xi_l$ defines coherence volume

 $\xi_t = (\lambda/2) (R/\Sigma) = 2.5 \mu m (h), \Sigma_x = 1 m m$ = 25 μm (h), Σ_z=0.1 mm (λ=1Å, R=50m) Speckle pattern from a porous silica gel

Abernathy, Grübel, et al.J. Synchroton Rad. 5, 37, 1998

Statistical Analysis of Speckle Pattern (1)

If the source is fully coherent and the scattering amplitudes and phases of the scattering are statistically independent and distributed over 2π one finds for the probability amplitude of the intensities:

$P(I) = (1/<I>) \exp(-I/<I>)$

Mean: <i> Std.Dev. σ : sqrt (<I²> -<I>²) = <I> Contrast: ß = $\sigma^2/<I>^2$ 1

partially coherent illumination:

the speckle pattern is the sum of M independent speckle pattern

 $\mathsf{P}_{\mathsf{M}}(\mathsf{I}) = \mathsf{M}^{\mathsf{M}} \bullet (\mathsf{I}/<\mathsf{I}>)^{\mathsf{M}-1}/(\Gamma(\mathsf{M})<\mathsf{I}>) \bullet \exp(-\mathsf{M}\mathsf{I}/<\mathsf{I}>)$

Mean: <I>

$$\sigma = <|>/M^{1/2}$$

 $\beta = 1/M$

$$C(\mathbf{r}_{1},\mathbf{r}_{2}) = [\langle |(\mathbf{r}_{1}) \bullet |(\mathbf{r}_{2}) \rangle / \langle |(\mathbf{r}_{1}) \rangle \bullet \langle |(\mathbf{r}_{2}) \rangle] -1$$

width: ΔC ; contrast: $\beta = C(\mathbf{r}, \mathbf{r})$

The Linac Coherent Light Source (LCLS)

Single pulse hard X-ray speckle pattern captured from nano-particles in a colloidal liquid (photon wave-length λ = 1.37 Å

Coherence properties of the FLASH FEL

A. Singer, F. Sorgenfrei, A. P. Mancuso, N. Gerasimova, O. M. Yefanov, J. Gulden, T. Gorniak, T. Senkbeil, A.Sakdinawat, Y.L D. Attwood, S. Dziarzhytski, D. D. Mai, R. Treusch, E. Weckert, T. Salditt, A. Rosenhahn,W. Wurth, and I. A. Vartanyants *OPTICS EXPRESS, 20/17. 17482 (2012)*

Spatio-temporal coherence properties of FEL pulses

Two beam interference:

fringe spacing = $\lambda / \sin \alpha$ coherence length I_c= sqrt(2ln2/ π) ($\lambda^2/\Delta\lambda$) coherence time τ_c = sqrt(2ln2/ π)($\lambda^2/\Delta\lambda$)/c

FLASH:
$$\lambda$$
 = 24 nm
 α = 0.18 – 0.7 mrad
 τ_c = 7.5 fs

R. Mitzner, B. Siemer, M. Neeb, T. Noll, F. Siewert S. Roling, M. Rutkowski, A.A. Sorokin, M. Richter, P. Juranic, K. Tiedtke, J. Feldhaus, W. Eberhardt, and H. Zacharias

OPTICS EXPRESS 16 (2008) 19909

Imaging techniques:

Lensless Imaging, Fourier Transform Holography