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N. Mattern et al 

APL  2003

Below Tg: harmonic change, described by Debye behavior 
At Tg: Transition to lower Debye-temperature 

+ structural changes

Structure by X -rays - temperature dependence II



Hermann Franz |  Master course mod. X-ray physics | July  20113 |  Page 3

Homepage W. Hoyer, TU Chemnitz

www.tu-chemnitz.de/physik/RND

Structure by X-rays and neutrons
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Pair Distribution Function .
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g(r) describes how the density 
of surrounding atoms varies as 
a function of the distance from 
a distinguished atom. 
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Structure determination of amorphous materials

Neutron diffraction
+ sensitive to different isotopes
+ ASF do not depend on Q
+ probes magnetic state of matter
- large sample volumes
- relatively slow, not suitable for in-situ studies

X-ray diffraction using high energy photons
+ high penetration depths (mm-cm)
+ relatively fast, suitable for in-situ studies
- less sensitive to elements
- ASF depend on Q

Extended X-ray Absorption Spectroscopy
+ highly sensitive to elements
+ reveals local atomic configuration
+ relatively fast, suitable for in-situ studies
- restricted sample size, geometry
- rather difficult to quantitatively analyze data 

on amorphous samples
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Resolution in real space .
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> Collecting diffracted photons up to high q values significantly improves 
resolutions of pair distribution function

ScFe metallic glass
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. Photoelectric absorption

-dI = I(z) µ dz

z
dz

I(z)

I(z) = I0 exp(-µz)

µ = ρaσa = (ρmNA/A) σa

ρa atomic number density

σa = σa(E) absorption cross section

ρm mass density

NA Avogadro’s number

A     atomic mass number

Lecture 2: page 17
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Absorption scan .

deII µ−= 0
Io represents incident intensity 

I is the transmitted intensity

µ is the absorption coefficient

d is the sample thickness

M. Stoica et al, Journal of Applied Physics 109 (2011) 054901
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Absorption scan .

Normalised = divide 
out E -3 decay
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EXAFS

Ee = hν – EK
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• Outgoing and 
reflected wave 
interfere at the 
location of the ad-
atom

• Requires sufficiently 
small bandwidth
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EXAFS

Ee = hν – EK
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Ni = average number of scattering atoms 
(coordination number), 

S0 = many-body amplitude factor
Fi(k) = backscattering amplitude characteristic of a 

particular type of back-scattering atom 
σ = mean square relative displacement. 
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EXAFS example
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K. Saksl et al, (2007)
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EXAFS example

a.q. = as quenched
Nx = various particle sizes after milling

Element specific 
information!
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EXAFS set-up

Monochromatic 
incoming beam

I0

Transparent detectors 
(ionisation chambers, diodes) 

Sample under 
investigation

Reference 
sample

• Reference samples allows to detect small energy shi ft of 
the absorption edge

• Chemical shift reflects the electron density around  the 
ad-atom

Is/I0 Ir/Is
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EXAFS set-up

• Electron yield
• Fluorescence detection
• Surface sensitivity combined with grazing 

incidence

Problem: highly absorbing samples (low energy edges )
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Reverse Monte Carlo modeling

RMC modeling of Y56Co20Al24 bulk metallic glass

Courtesy of Dr. K. Saksl

Acceptance of the move:
First the experiment-model difference is 
calculated

If ψ2
n+1 < ψ2

n the move is always accepted.
If ψ2

n+1 > ψ2
n the move is accepted with the 
probability exp[-(ψ2

n+1 - ψ2
n)/2]
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Move:
One particle is moved randomly taking into 
account applied constraints.

Settling:
Everything is repeated until 
ψ2 begins to oscillate 
around a constant value. 

are combined in total structure factor
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Diffraction:
The partial gij(r) functions are calculated from the atomic 
coordinates and transformed to reciprocal space:

EXAFS:
The model of EXAFS signal χi(k), at 
the absorption edge of i-type atoms 
can be calculated from the gij:

drrgkrrck ijij
j
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while γij is the atomic pair backscattering signal

))(2sin(),(),( krkrrkAkr ijijij Φ+=γ

XRD

ND

EXAFS
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Monte Carlo move

• Move each atom sequentially 
by a small stochastic 
displacement

• Boundary conditions:
• Minimum NN distance
• Chemical composition
• Average density
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Reverse Monte Carlo modeling

RMC modeling of Y56Co20Al24 bulk metallic glass

Courtesy of Dr. K. Saksl
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Reverse Monte Carlo result
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Reverse Monte Carlo results

X.D. Wang et al,  (2008)
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Reverse Monte Carlo results

• Usually this is a structure compatible with the 
experimental data

• For sufficiently independent input data this can be  
a unique solution
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Time dependent structures, inelastic scattering

Up to now:

But in general: r j = r j(t) 

∑= )()(),( tiQr
j

jeQftQF



Hermann Franz |  Master course mod. X-ray physics | July  20113 |  Page 23

Time dependent structures, inelastic scattering

titiQr
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Fully time dependent amplitude
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In first approximation r(t) = r 0 + v*t
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Doppler shift !
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Time dependent structures, inelastic scattering

Dynamical structure factor:
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FT of the density -density correlation function
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Time dependent structures, inelastic scattering
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Static scattering cross -section : 

Instantaneous position of all atoms (electrons)
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Time dependent structures, inelastic scattering

Elastic (zero 
phonon) 

scattering
Ei = Ef

Q = K

k i
k f

Q

k i
k f

K

Inelastic 
scattering

(one phonon)
Ei = Ef  m ω(k)

Q = K + k
k

Scattering from moving atoms

Phonon 
creation or 
anihilation

E
hc

kx

π
λ
π 22 ==


