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Glass transition

Dynamicsin real disordered solids
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Density correlation functions and MCT

(0= (200,010,

@)+ Qi (t)+ Q%[ m,(t -t')g, (t')dt = 0
Equation of motion for density correlators incluglimemory term*
 Ergodicity - non-ergodicity transition at T

« Power laws for correlation functions near T
* Order parameter is the ergodicity parameger f

F(t)=f,—h,(t/7) +...= fexpCt/1,)” o-relaxation
()= 1, +h (/0 +....  B-relaxation (cage process)
f,=yT.-T Square-root singularity
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Density correlation functions and MCT

f =~ [T -T Square-root singularity

T. describes a transition temperature which
in contrastto T , does not depend on

experimental parameters.

The glass transition is an ergodic - non

ergodic cross over

In most systems T . is 20% higherthan T ,

l.e. the transition is in the “liquid” region
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The glass transition temperature T, and T,
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Density correlation functions and MCT

F

log,q (1)

Figure 4. Companson of the MCT solution for ¢b; (1) (sohid curve) with the asymptotic f-relaxation
approximation (dashed curve) (equations (25) and (26)).The dotted curves show the two power laws.
(From reference [4].)
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MCT results for correlation functions at the glass transition
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Quasielastic nuclear resonant forward scattering
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Non ergodicity parameter
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Square-root behaviour as predicted by mode-coupling theory

Stretching exponent = 0.48, independent of T
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Neutron scattering results
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Structure determination of amorphous materials

X-ray diffraction using high energy photons Neutron diffraction
+ high penetration depths (mm-cm) + sensitive to different isotopes
+ relatively fast, suitable for in-situ studies + ASF do not depend on Q
- less sensitive to elements + probes magnetic state of matter
- ASF depend on Q - large sample volumes
of R)A 1st coordination shell - relatively slow, not suitable for in-situ studies
ﬁ 2nd coordination shell
1 A contirlmum
Eﬂ | Extended X-ray Absorption Spectroscopy
0 } i 3 *R’ + highly sensitive to elements

+ reveals local atomic configuration
+ relatively fast, suitable for in-situ studies
- restricted sample size, geometry
\ (% - rather difficult to quantitatively analyze data
(, *-’,\:3\""-%"..; i on amorphous samples

}9‘: 440
LS

However, none of these techniques gives a
complete 3D image of amorphous structure ®
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In-situ tensile experiments using high-energy XRD

@DORISHI < -
BWS5 is dedicated to X-ray scattering experiments
using high-energy photons (60 - 150 keV). Parameters:
The large penetration depth at these energies of - wavelength A =0.12398 A (100 keV)
typically sereral mm to cm allows the - crossection of collimated beam 1mm?
investigation of bulk materials and complex - exposure time 10 s
sample environments. - XRD in transmission mode

- 2D ma345 image plate detector used in

The experimental station is equipped with a triple symetric mode

axis diffractometer and an image plate camera.
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Absorption scan

Absorption of [(Fel_XCOX)7L2B2 4Y4.8]96Nb 4 BMG & 2mm
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| is the transmitted intensity
M is the absorption coefficient

d is the sample thickness
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Absorption scan on [(Fe]_xCox)ﬂ_sz 4 4'8]96Nb 4 BMG @ 2mm
photon energy E=100 keV, (A = 0.0123984 nm)
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Calculation of structure factor

The measured X-ray diffraction intensity may be expressed [10] by
QY = PAIN(IZ  + I + I (5.1)

where P is the polarization factor, A the absorption factor, N normalization constant, and
[coh [ine [mul are the coherent, incoherent(Compton), and multiple scattering intensities,
respectively, in electron units. We can define the structure function(S((Q)) in the following

form.
S(Q) = 2k = ((F%) = (OAAH* (5.2)
where (f) is the sample average scattering factor. Therefore to get a structure function,

we have to do the following corrections [11] step by step on raw data.

Correcting for background, absorption and fluorescence

25000 T T T T T T T T T T T T T T T T T
Dead-time correction measured ——
corrected ——
Multiple scattering correction 20000
Polarization correction 2
= 15000 |
8
Absorption correction g
. . 10000 [
Normalization fa’
—
Compton scattering correction 5000
Laue diffuse correction
O 1 1 1 1 1 1 1 1 1
0 2 4 6 8 10 12 14 16 18

[10] Y. Waseda. The structure of non-crystalline materials. McGraw-Hill, New York,
1980.

[11] €. N. J. Wagner, J. Non-Cryst. Solid 31, 1, 1978
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Compton scattering

Normalization and Copmton scattering correction

800 T T T T T T T T T T T T T T T T T
normalized ——
Compton
700 7 corrected ——
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L
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5
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0
0
q(A™h
(]Iiazcoz(‘ge) incoherently diffracted intensity per atom, a;=2:6917 Z; ' +1:2450 (43)
’ \ bor b;=11870 Z; } +0-1075+ 000436 Z,
incoh
Q)= ( ) 2. &Z; r0m AP — (001543 Z)2 +(0:01422 Z)%.  (Ad)

with n the number of atomic species, Z; the atomic
number of species j, and a; and b; semi-empirical J. Appl. Cryst. (1984). 17, 61-76
expressions given by
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Laue diffuse scattering

Laue diffuse correction

800 T T T T T T T T T T T T T T T
A after Compton
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a) The complex scattering power for atomic species j _ &
(a) p ering power for atomic species J (17)= ZC.fiZ(OI)}
L{Q)=fJ(Q)+fj(/')+l_fJ(/'), (A]) | i=1
where / % is calculated using the analytical expressions 2 [ ?
given in International Tables for X-ray Crystal- <f> = ZC. fi (CI)
lography (1974), and ' and f” are taken from Cromer L i=1

& Liberman (1970).

J. Appl. Cryst. (1984). 17, 61-76
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Structure factor

> Measured intensities corrected for absorption, polarization, fluorescence, multiple
scattering, Compton scattering

> Proper normalization based on weighted atomic scattering factors (Faber-Zimman
formalism)

Structure factor

1°"q) = (f*)
fr

2 1 where (/) = XL, ¢ifi(¢) and (f*) = X, cif7(g). in
' which ¢; corresponds to the atomic fraction of the com-

_ /\ ponent i having X-ray atomic scattering factor fi(qg).
1 v LN The reduced pair distribution function, G(r), can be ob-

S(g) =1+ (D

S(@) ()

tained through a sine Fourier transformation

(o)

Gy =2 f 418 (g) — 1] sin(gr) dg. @)

0
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Pair Distribution Function

Pair distribution function
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g(r) describes how the density
of surrounding atoms varies as
a function of the distance from
a distinguished atom.
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Coordination number

CN = T RDF (r)dr :T [47100r2 + rG(r)]dr
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Resolution in real space

>  Collecting diffracted photons up to high q values significantly improves
resolutions of pair distribution function

N ScFe metallic glass

S(q) ()
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- q(AT)
G(r) =47{(r) = 4] = [ a(S(Q) ~D sinar) g

G(r) (A)
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Summary

1) Measure diffracted photons up to high g-range

:4_]T3in larct (3)
Omax 1 > g D

2) Perform corrections and calculate structure factor S(q)

S(q)=1+%><:2> <f2>=[ic.fi2(q)} (f)° {ic.fi(q)T

i=1 i=1
3) Fourier transformation of S(q) one obtains Pair Distribution Function G(r)

6(r) = 4711 p(r) - ] == [ a(S(a) ~Dsin(ar)cg

4) Determine mean atomic density from G(r) on low r-range

G(r) =-4mp,

4) Calculate Coordination Number (CN) from Radial Distribution Function RDF(r)

CN = T RDF(r)dr =T [47;00r2 + rG(r)]dr

r n
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In-situ tensile experiments

Courtesy J. Bednarcik
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Determination of deformation state by XRD

The symmetric circular diffraction pattern is characterized with
respect to the polar coordinates (s, n). By dividing the n-range of 0 to
21 into 36 segments, one obtains symmetrized intensity distributions

17; +17/36

@a)= [l Qn)+1(Qn+n)dy

17; =736

with i = 1...18, where the wave-vector
transfer Q = Q(s) is defined by

Amr . (1 S
S) =——Sin —arctal —
Q9 =i 2 g(Dj

in which A denotes the wavelength, D
refers to the sample-to-detector distance
and s represents the distance from the
origin of the polar coordinate system.

The relative change of the position of the
principal peak upon applying an external
stress defines the strain

— Q(’7i ’O) _Q(’7i ’0)
qa(7,,0)

H. F. Poulsen et al., Nat. Mater. 4 33-35 (2005)

&(n.0)
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Determination of tensor components
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Analysis In reciprocal space
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Stress-strain curves

La based metallic glass
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Tensile deformation at elevated temperatures
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Relaxation phenomena and glass transition
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Figure 1: Detailed view showing infrared lamp e
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furnace. Black tube sitting between two lamps .
supports capillary with the sample and serves as Temperature [*C]

a heat condenser.
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Relaxation phenomena and glass transition
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Structure by X -rays - temperature dependence ||
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Structure vs. macroscopic propes

Understanding relation between
the structure and macroscopic
properties is important for
improving performance of
existing and crucial for designing
novel materials
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