

Cluster aus Halbleitern

- Insbesondere von Clustern aus im Festkörper halbleitenden Materialien wie Si oder Ge hatte man sich sehr viel für mögliche Anwendungen versprochen
- Diese Wünsche haben sich jedoch nicht erfüllt, da sich die Eigenschaften von z.B. kleinen Si-Clustern sich grundlegend von denen des Festkörpers unterscheiden
- Im folgenden werden exemplarisch die Eigenschaften von Si-Clustern diskutiert

 $\mathcal{A} \mathcal{A} \mathcal{A}$

▲□ → ▲ □ → ▲ □ → □

Si Massenspektrum

- Ähnlich dem vom Kohlenstoff, jedoch werden immer gerad- und ungeradzahlige Cluster beobachtet
- Keine Si-Fullerene

 $\mathcal{A} \mathcal{A} \mathcal{A}$

Э

Si Strukturberechnung

- Berechnung der geometrischen Struktur am Beispiel von Si₁₄-Clustern
- Simulation mittels Molekulardynamik, um die Grundzustandsstruktur zufinden
- Gezieltes Heizen und Abkühlen der Cluster

 $\mathcal{A} \mathcal{A} \mathcal{A}$

3

-∢ ∃ ▶

∃ ▶

< □ ▶

Struktur kleiner Si Cluster

- Geometrische Struktur von kleinen Si_n-Clustern
- Typische Elektronenpopulation: $3s^{1.75}3p^{2.25} 3s^{1.95}3p^{2.05}$
- Fast keine *sp* Hybridisierung
- Vollkommen anderes Bindungsverhalten als im Festkörper

 $\mathcal{A} \mathcal{A} \mathcal{A}$

3

<ロト < 回 ト < 国 ト < 国 ト -

Si: Elektronische Struktur

- Erwartung: Bandabstand nimmt mit zunehmender Clustergröße ab
- Elektronische Struktur \Rightarrow Photoemission

590

<ロト < 団 > < 巨 > < 巨 > < 巨 > < 巨 < 三</p>

Halbleiter Cluster

Clusterphysik

Si Photoemission

Raghavachari et al., J.Chem.Phys. 94, 3670(1991); Xu et al., J.Chem.Phys. 108, 1395(1998) < 🗇 🕨 < 🖹 🕨 🛓 🔗 🔍 🗠

Clusterphysik

Si Photoemission

HOMO-LUMO
 Abstand =
 "Band gap"
 bleibt fast
 konstant im
 Bereich bis Si₂₀

Muller et al., PRL 85, 1666 (2000)

▲□▶ ▲□▶ ▲ 国▶ ▲ 国▶

SQ P

王

Si Photoemission – Geometrie

- Photoelektronenspektroskopie kann klar die verschiedenen isomeren Strukturen f
 ür Si₁₁ unterscheiden
- Vergleich mit der Theorie erlaubt es die Geometrie zu bestimmen
- TTP Subunit ist die Struktur mittelgroßer Si-Cluster

SQA

Si Photoemission – Geometrie

• Kleine Si_n Cluster liegen als "tricapped trigonal prism" vor

A. A. Shvartsburg et al., J. Chem. Phys. 112, 4517 (2000)

SQ (A

<ロ> < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Si HOMO-LUMO Abstand

- Ab Si₂₆ wird das HOMO–LUMO Gap jedoch sehr klein
- Der Halbleiter Silizium wird metallisch
- Ursache ?

 $\mathcal{A} \mathcal{A} \mathcal{A}$

3

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Metallisches Silizium

• Oberflächenzustände

- Wie auch im Siliziumfestkörper bilden sich an der Oberfläche zweidimensionale Zustände aus, die metallischen Charakter haben
- Im Cluster ist der Oberflächenanteil so groß, daß sie die Eigenschaften dominieren und der Cluster damit insgesamt metallisch wird
- Passivieren der Oberflächenzustände
 - Die Oberfläche kann z.B. durch Anlagerung von H-Atomen passiviert werden

 $\mathcal{A} \mathcal{A} \mathcal{A}$

<ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

XAS von Siliziumclustern

XAS von Si⁺₁₁

- Röntgenabsorption von Si⁺_n in einer Falle
- Partial Ion Yield PID

L

$$Si_n^+ + \hbar\omega \longrightarrow Si_m^{k+} + \dots$$

- Komplizierte NEXAFS
 Spektren in den meisten
 Fragmentkanälen
- Einige Fragmente zeigen nur die direkte 2p Anregung

・ロト ・日 ・ ・ ヨ ・ ・ ヨ ・

- M. Vogel et al., Phys.Rev.B 85, 195454 (2012)
 - Möglichkeit, die 2p Photoelektronenspektren zu messen

 $\mathcal{A} \mathcal{A} \mathcal{A}$

E.

2p PES von Siliziumclustern

- 2p PES Spektren ändern sich mit der Clustergröße
- 2p_{1/2} 2p_{3/2} bei kleinen Clustern
- Verschiebung der 2p Bindungsenergie mit der Clustergröße

SQ P

Э

Si_n 2p Bindungsenergie

Verhalten läßt auf ein metallisches Screening schließen

Clusterphysik

SQA

臣

Si_n 2p PES und Geometrie

- Core Level PES Chemical Shift aufgrund der unterschiedlichen geometrischen Plätze
- Vergleich mit DFT (B3LYP - TZVP)
 Rechnungen liefert
 Aussagen über die
 Geometrie der Cluster

<ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

SQA

3

Metall-Isolator Übergang

 Allgemein stellt sich die Frage, ob ein Cluster als ein Metall oder ein Isolator betrachtet werden kann

• Metall:

Zustandsdichte an der Fermi-Kante und keine Bandlücke

Isolator:

Große Bandlücke \equiv Großer HOMO–LUMO Abstand

 In einem metallischen Cluster sollte zudem die Elektronenaffinität durch Gleichung 118 gegeben sein.

$$\mathsf{EA}(R) = W - rac{1}{2} \cdot rac{e^2}{R^2}$$

(Elektronenaffinität einer metallischen Kugel)

Als Beispiel sollen hier zunächst Quecksilber-Cluster betrachtet werden.

 $\mathcal{A} \mathcal{A} \mathcal{A}$

▲ □ ▶ ▲ □ ▶ ▲ □ ▶ □

Metall-Isolator Übergang

- Warum Quecksilber ?
- Elektronische Struktur von Quecksilber Atomen: $5d^{10}6s^2 \rightarrow$ Abgeschlossene Schalen \rightarrow Edelgas ähnlich \rightarrow Isolator
- Quecksilber im Festkörper, Hybridisierung von s und p Zuständen \rightarrow Metall
- Cluster \rightarrow ?

Metall-Isolator Übergang

Photoelektronenspektroskopie an Hg⁻_n Clusteranionen

B. von Issendorff, O. Cheshnovsky, Annu.Rev.Chem. 56, 549 (2005)

Gold Cluster

- Gold Cluster sind in den letzten Jahren intensiv studierte Systeme, aufgrund ihrer interessanten geometrischen und elektronischen Eigenschaften
- Kleine, auf Oberflächen deponierte Gold Cluster haben katalytisches Verhalten gezeigt
- An Au_n Clustern können sehr gut Streuexperimente durchgeführt werden, da aufgrund des hohen Z der Streuquerschnitt sehr groß ist
- Als Material mit hohem Z(= 79) zeigt Gold ausgeprägte relativistische Effekte, die zum Teil die besonderen Eigenschaften bewirken

 $\mathcal{A} \mathcal{A} \mathcal{A}$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □

Weitere Element Cluster Gold Cluster

Photoelektronenspektren von Gold Clustern

Clusterphysik

Weitere Element Cluster Gold Cluster

Mögliche Geometrien von Au₂₀

Weitere Element Cluster Gold Cluster

Geometrie von Au_n mittels TIED und DFT

D. Schooss et al., Phil. Trans. R. Soc. A **368**, 1211 (2010)

<ロト < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < E 590

Clusterphysik

- Aus den TIED Experimenten, den PES Messungen und dem Vergleich mittels DFT berechneter Strukturen kann der Grundzustand von Au⁻₂₀ eindeutig als Tetraeder identifiziert werden
- TIED kann sowohl an Anionen Au⁻_n als auch Kationen Au⁺_n durchgeführt werden
- Wie sieht die Struktur weiterer Au Cluster aus ?

 Experimente können auch an sehr großen Clustern durchgeführt werden, jedoch setzt hier die Theorie das Limit

\$				
$\operatorname{Au}_{3}^{+} D_{3h}$	$\operatorname{Au}_7^+ D_{6h}$	Au ₁₀ ⁺ C_{3v} 0.11eV	$Au_{14}^+ C_1 = 0.12 eV$	$Au_{18}^+ C_s = 0.01 eV$
$\operatorname{Au}_{4}^{+} D_{2h}$	$\operatorname{Au}_{8}^{+}C_{s}$ 0.06 eV	$\operatorname{Au}_{11}^+ D_{3h}$	$\operatorname{Au}_{15}^+ C_1$	$Au_{19}^+ C_1 = 0.30 eV$
$\operatorname{Au}_5^+ D_{2h}$	$\operatorname{Au}_{9}^{+}C_{2v}$	$\operatorname{Au}_{12}^+ C_{2v}$	$\operatorname{Au}_{16}^+ C_{2v}$	$\operatorname{Au}_{20}^{+} D_{2d}$
$\operatorname{Au}_6^+ C_{2v}$	$\operatorname{Au}_{9}^{+}C_{3v}$ 0.21 eV	$\operatorname{Au}_{13}^{+} C_{2v}$	Au ₁₇ ⁺ $C_{\rm s}$ 0.36eV	$Au_{20}^+ C_3 = 0.27 eV_{3}$

Geometrie von Au Clustern

- Für kleine Au Cluster zeigen die Anionen und Kationen unterschiedlichen Geometrien
- Au_n⁻ zeigt für $n \le 12$ flach 2D Strukturen
- Au_n^+ besitzen für n > 7 kompakte 3D Geometrien
- Bei einigen Clustergrößen ist keine eindeutige Zuordnung alleine mit TIED Daten möglich, da mehrere Isomere existieren
- Wie können Isomere getrennt werden ?

SQ (

▲□ → ▲ □ → ▲ □ → □

Ion Mobility Experiments

- Messung der Geschwindigkeit, mit der Ionen in einem elektrischen Feld durch ein Buffergas driften
- Als Buffergas wird typisch Helium verwendet

- Die Mobilität wird von der Form der Cluster bestimmt
- Mobilität

$$K_0 = \frac{L}{t_D \cdot E_D} \frac{p}{1013 m bar} \frac{273.2K}{T}$$
 (145)

- L Länge der Driftstrecke
- t_D Driftzeit
- E_D Elektrische Feld
- Daraus folgt eine Collision Cross Section

$$\sigma_{\Omega} = \frac{3q}{16N_0 \cdot K_0} \sqrt{\frac{2\pi}{\mu k_B T}} \tag{6}$$

- *q* lonenladung
- N₀ Buffergasdichte
 - μ Reduzierte Masse Buffergas Cluster

 $\mathcal{A} \mathcal{A} \mathcal{A}$

32

146)

Ion Mobility Au_n^+ vs Au_n^-

- Doppelpeak bei Au₁₂⁻ durch zwei isomere Strukturen
- Au⁻_n Cluster zeigen aufgrund der flachen Strukturen f
 ür kleine n eine deutlich kleinere Mobilit
 ät als die mehr kompakten Au⁺_n Cluster

- Au₁₂ Doppelpeak bei Raumtemperatur
- Aus der Driftzeit durch die Zelle kann eine Konversionsrate von $10^3 s^{-1}$ abgeleitet werden, woraus eine interne Vibrationsenergie von $\cong 0.65 eV$ abgeleitet werden kann
- \Rightarrow Cluster sind heiß (\cong 6000*K*)

 $\mathcal{A} \mathcal{A} \mathcal{A}$

Temperaturabhängige Mobilität

- Einfluß der Temperatur auf Au₉⁺ Cluster
- Für $T \leq 120$ zwei verschiedene Isomere
- Für höheres T ist nur noch ein Isomer vorhanden

SQA

Э÷

≣►