Chemie von Metallclustern

Chemische Eigenschaften

- Neben den magnetischen Eigenschaften stellen die chemischen Eigenschaften von Übergangsmetallclustern eine weiteres interessantes Gebiet dar
- Insbesondere die katalytischen Eigenschaften von Clustern der Übergangsmetalle sind von großer Bedeutung, da sich hier ein sehr großes Anwendungspotential ergibt
- Wie werden die chemischen Eigenschaften von Clustern untersucht ?
 - Im Falle freier Cluster erfolgen die Experimente mit Hilfe von sogenannten Flow-Reaktoren, bei denen die Produkte von chemischen Reaktionen bestimmt werden
 - Für Anwendungen sind wieder insbesondere deponierte Cluster von Interesse. Hier werden Standardmethode der Oberflächenphysik zur Analyse eingesetzt. Diese sind z.B.
 - Photoelektronenspektroskopie (PES)
 - Thermoprogrammierte Desorption (TPD)

SQ Q

Größenabhängige Reaktivität

 Beispiel f
ür die gr
ö
ßenah
ängige Reaktivit
ät: Hydrierung von Ethen zu Ethan mit Pt Teilchen

Clusterphysik

 $\mathcal{A} \mathcal{A} \mathcal{A}$

Flow-Reaktoren

- In Flow-Reaktoren wird die Wechselwirkung von Clustern mit Gasteilchen untersucht
- Aus der Bestimmung der Reaktionsraten gewinnt man Informationen über die größenabhängige Reativität der Cluster
- Die entstehenden Produkte werden mit Hilfe von Massenspektrometern nachgewiesen

 $\mathcal{A} \mathcal{A} \mathcal{A}$

Größenabhängige Reaktivität

- Bei chemischen Reaktionen unterscheidet man zwischen zwei verschiedenen prinzipiellen Varianten
 - Reaktionen im Gleichgewicht
 - Diese sind Reaktionen sind im Gleichgewicht und unabhängig von der Wechselwirkungszeit
 - Beispiele sind z.B. Adsorptions und Desorptionsgleichgewichte, die zu einer konstanten Bedeckung des Clusters führen
 - Untersuchungen der Temperaturabhängigkeit können hier Informationen über die Bindungsenergie und die Entropie der Adsorption liefern
 - Kinetisch kontrollierte Reaktionen
 - Die Produktzusammensetzung ändert sich mit der Zeit und die Konzentration der Reaktanden hängt i.A. exponentiell von der Zeit ab
 - Reaktionsrate k für eine Reaktion $X_n + A \longrightarrow X_n A$

$$\frac{d[X_n]}{dt} = -k[X_n][A] \tag{144}$$

<ロト < 団ト < 団ト < 団ト = 三日

 $\mathcal{A} \mathcal{A} \mathcal{A}$

Reaktion von Eisen mit Waserstoff

• Beispiel: Reaktion von Fe_n Clustern mit Wasserstoff H₂ Fe_n + H₂ \longrightarrow Fe_n + H + H (Dissoziation)

 $\mathcal{A} \mathcal{A} \mathcal{A}$

3

<ロ > < 同 > < 同 > < 三 > < 三 > <

Reaktion von Eisen mit Wasserstoff

 Aus der Abnahme der Intensität einer Clustergröße als Funktion der angebotenen Gasmenge kann die Reaktionsrate bestimmt werden.

Clusterphysik

 $\mathcal{A} \mathcal{A} \mathcal{A}$

32

▲ 글 ▶

Größenabhängigkeit der Reaktionsrate

 Reaktionsrate k und Ionisationspotential IP zeigen eine Korrelation

Metallcluster

Chemie von Metallclustern

Wasserstoff Dissoziation

- Die Energiebariere a zwischen dem molekularen Zustand H₂ und dem dissozierten Zustand H+H hängt stark von der Lage des d-Bandes des Metalls ab.
- Hier: Annahme
 "einfacher"
 Lennard-Jones
 Potentiale

<ロト < 回 > < 国 > < 国 > :

 $\mathcal{A} \mathcal{A} \mathcal{A}$

Reaktionen im Gleichgewicht

- Aus einer Quasigleichgewichtsreaktion ist es möglich Informationen über die Geometrie der Cluster zu gewinnen
- Hier werden Massenspektren von adsorbatbedeckten Clustern gemessen um eine Sättigungsbedeckung zu bestimmen
- Dazu wird der Adsorbat-Gasdruck variiert und damit die Zahl der Atome oder Moleküle, mit denen der Cluster reagieren kann
- Die Moleküle sollten nur schwach an den Cluster gebunden sein, da ansonsten der Cluster durch die frei werdende Bindungsenergie fragmentieren kann
- Im Abhängigkeit vom eingestellten Gasdruck ergeben sich Plateaus in den experimentellen Daten, die sich über einen weiten Druckbereich nicht ändern

 $\mathcal{A} \mathcal{A} \mathcal{A}$

<ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Beispiel NH₃ auf Fe

- Jedes Plateau entspricht einer bestimmten Zahl von adsorbierten Molekülen auf der Clusteroberfläche
- Die Zahl der adsorbierten Moleküle entspricht dann der Zahl energetisch äquivalenter Adsorptionsplätze
- Bei höheren Drücken werden auch energetisch ungünstigere Plätze besetzt, bis der Cluster vollständig bedeckt ist

 $\mathcal{A} \mathcal{A} \mathcal{A}$

Metallcluster Chemie von Metallclustern

Beispiel CO auf Pt

Clusterphysik

Beispiel CO auf Pt (2)

- Was passiert bei der Adsorption von Molekülen an einen Cluster ?
- Photoelektronenspektroskopie ist geeignet, um die Änderung der elektronischen Struktur des Clusters zu beobachten
- Die Photoelektronenspektren von Pt₃(CO)⁻_n Clustern zeigen eine starke Variation der Valenzzustände mit der Zahl der adsorbierten CO Moleküle
- Hybridisierung der Platin 5d Orbitale mit den CO 5 σ und 1 π Orbitalen
- Bereits ein CO Molekül ändert die elektronische Struktur deutlich
- (Resonante) Rumpfniveauspektroskopie erforderlich, um die C, O und Pt Atome einzelnen zu untersuchen

 $\mathcal{A} \mathcal{A} \mathcal{A}$

(日)

Reaktion von deponierten Clustern

- Wie im Fall des Magnetismus ist auch f
 ür die Anwendung z.B. in der Katalyse eine Deponierung der Cluster auf einer Oberfl
 äche erforderlich
- Die Drosophila der Katalyse Forschung ist die Oxidation von CO zu CO₂, weshalb dies auch der Prozess ist, der am weitaus häufigsten an Clustern untersucht worden ist
- Typische Clustermaterialien, sind Edelmetalle wie Pt, Pd und auch Au
- Die Experimente werden oft mit der sogenannten Thermo-Programmierten-Desorption (TPD) durchgeführt
- Eine wichtige Anwendung ist z.b. die katalytische Oxidation von CO in Katalysatoren von Kraftfahrzeugen

Metallcluster Chemie von Metallclustern

Experiment zur Nanokatalyse

 Zwei typische Experimente, wie sie zur Untersuchung zur Nanokatalyse eingesetzt werden

U. Heiz, W.-D. Schneider, J.Phys.D 33, R85 (2000)

 Zum Einsatz kommen insbesondere verschiedene Standardmethode der Oberflächenphysik

Clusterphysik

 $\mathcal{A} \mathcal{A} \mathcal{A}$

Thermo-Programmierte-Desorption (TPD)

- Mit Hilfe von TPD wird das Adsorptionverhalten von Molekülen auf Oberflächen untersucht
- Dazu werden Moleküle bei tiefen Temperaturen auf einer Oberfläche adsorbiert
- Bei der danach erfolgenden langsamen Temperaturerhöhung desorbieren die Moleküle abhängig von der Bindungsenergie an die Oberfläche bei verschiedenen Temperaturen
- Die desorbierenden Moleküle werden mit einem Massenspektrometer nachgewiesen
 - CO und das Reaktionsprodukt CO₂ können getrennt nachgewiesen werden
- Andere Namen sind z.B. Thermo-Desorptions-Spektroskopie (TDS)

500

<ロ> < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

TPD – CO auf Platin

- Oxidation von CO zu CO₂ mit verschiedenen Pt_n Clustern, die auf einem MgO Substrat deponiert sind
- Nachgewiesen wird die Menge des entstehenden CO₂ in Abhängigkeit von der Temperatur

Heiz et al, JACS 121, 3214 (1999); PRL 86, 5950 (2001)

 $\mathcal{A} \mathcal{A} \mathcal{A}$

Metallcluster Ch

Chemie von Metallclustern

CO Oxidation mit Platin

CO Oxidation mit Platin

- Starke Variation der Oxidationseffizienz mit der Clustergröße; Maximum bei 14-15 Platinatomen
- Es sind verschiedene Oxidationsprozesse bekannt von Pt(111) Kristallen (α) und gestuften Pt(355) Oberflächen (β_x) bekannt

- Wichtig ist die Dissoziation von O₂ um hochreaktive Sauerstoffatome zu generieren
- Ansatz: Bindungsenergie der Pt 5d Orbitale liegt im Bereich der Bindungsenergie des Sauerstoff HOMO Zustandes
- Lage der 5d Zustände variiert mit der Clustergröße

Metallcluster Chemie

Chemie von Metallclustern

CO Oxidation mit Platin

 Bindungsenergie des HOMO Zustandes bzw. des von Pt_n Clustern, Atomen in der Gasphase und Platinfestkörper

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

王

Gold als Katalysator ?

- Wie allgemein bekannt ist Gold als Festkörper chemisch sehr inert und es sind kaum Reaktionen bekannt
- Interessanterweise arbeiten jedoch kleine, auf einer MgO Oberfläche deponierte Goldcluster Aun als Katalysatoren
- Die Güte der MgO Oberfläche hat einen starken Einfluß auf die katalytische Aktivität

<ロ > < 回 > < 回 > < 回 > < 回 > <

• Wie kann man dieses verstehen ?

Sanchez et al, J.Phys.Chem.A 103, 9573 (1999)

 $\mathcal{A} \mathcal{A} \mathcal{A}$

Metallcluster Chemie von Metallclustern

Goldcluster als Katalysatoren

- Im Fall einer schlechten MgO Oberfläche besitzt diese viele Farbzentren. Insbesondere die Sauerstoff-Fehlstellen spielen eine Rolle bei der Aktivierung der Goldcluster
- Lagert sich ein Au₈ Cluster an ein O-Farbzentrum (FC) an, so führt dies zu einem Ladungstransfer von ≈0.5 e von der MgO Oberfläche in den Goldcluster
- a,b Relaxierte Struktur von Au₈ auf einer O-FC in MgO
 - c Orbital des FC
- d.e. Ladunosdichte am Ort des FC

Metallcluster Chemie von Metallclustern

Goldcluster als Katalysatoren – Reaktion

- Reaktionspfad: Eley-Rideal [ER] und Langmuir-Hinshelwood [LHt, LHp]
- ER und LHt sollten dabei bereits bei kleinen Temperaturen (T≈80 K) auftreten, während die LHp Reaktion erst bei höheren Temperaturen beobachtet werden sollte
- Insbesondere die LHp Reaktion wird durch die Anwesenheit von FC deutlich verstärkt

▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶

 $\mathcal{A} \mathcal{A} \mathcal{A}$

E.

Ferroelektrizität

- Ferromagnetismus: permanentes magnetisches Dipolmoment In kleinen Clustern haben wir Superparamagnetisches Verhalten in verschiedenen Materialien gefunden
- Ferroelektrizität
 → permanentes elektrisches Dipolmoment
 Nicht möglich in metallischen Systemen
- Wie lassen sich jedoch kleine metallische Cluster polarisieren (induziertes elektrisches Dipolmoment) ?
- Experimente an kleinen, massenselektierten, freien Niob Clustern Walt A. de Heer et al. Science 300 1265 (2003), Phys.Rev.Lett.
 93, 086803 (2004)
- Messungen sind äquivalent zu Stern-Gerlach Messungen zur Bestimmung von magnetischen Momenten
- Ablenkung eines elektrischen Dipols in einem inhomogenen elektrischen Feld dE/dz

 $\mathcal{A} \mathcal{A} \mathcal{A}$

(口)

Metallcluster Ferroelektrizität

Ferroelektrizität – Nb_n Cluster

- Messungen in Abhängigkeit von der Temperatur durch Thermalisierung in kalten Heliumgas
- Unterschiedliches Verhalten der Nb_n Cluster in Abhängigkeit von der Temperatur
 - $T = 300 \ K$: Sehr kleine Auslenkung der Cluster \rightarrow kleines, induziertes elektrisches Dipolmoment \rightarrow Cluster wird polarisiert \rightarrow metallisches Verhalten
 - T = 50 K: Deutliche Ablenkung der Cluster in dem dE/dz-Feld

Clusterphysik

Metallcluster Ferro

Ferroelektrizität

Ferroelektrizität – Nb_n Cluster

Wie groß ist die Polarisierbarkeit der Cluster in Abhängigkeit von der Clustergröße ?

Clusterphysik

- Sehr hohe elektrische Dipolmomente der Nb_n Cluster lassen sich nur durch ein permanentes elektrisches Dipolmoment erklären
- Es scheint zwei verschiedene Phasen zu geben, in denen die Cluster vorliegen können
 - "normale" metallische Phase mit einem kleinen, induziertem Dipolmoment
 - ferroelektrische Phase mit einem großen, permanenten elektrische Dipolmoment
 - Anteil der ferroelektrischen Phase steigt bei tiefen Temperaturen stark an
- Wie können diese beiden Phasen unterschieden werden ?
 - Normale Mode \rightarrow Ablenkung im Feld $\propto E \cdot \frac{dE}{dz}$

 $\Rightarrow \propto E \Leftrightarrow$ induziertes Dipolmoment $P_{ind}/N \approx 10^{-3} D(ebye)$

- ferroelektrische Mode \rightarrow Ablenkung im Feld $\propto \frac{dE}{dz}$
 - \Rightarrow permanentes Dipolmoment $P_{perm} \approx 1D$ ist unabhängig von E
- Ursache der ferroelektrischen Phase ?

S a A

(口)

Metallcluster Ferroelektrizität

Ferroelektrizität – Nb_n Cluster

Clusterphysik

590

E

- Tiefe Temperatur
 - Vibration des Clusters ist eingefroren
 - Cluster können nur rotieren
- Mittlerer Abstand der Rotationsniveaus

Rotationskonstante B : $B/k_B \approx 0.1 N^{-5/3} K$ Drehimpuls $J \approx \sqrt{k_B \cdot T/B}$ Dipolmoment P = dW(E)/dE

P ergibt sich aus der Arbeit, die im dE/dz Feld geleistet wird und ist gleich der Steigung

• Verhalten der Energieniveaus im elektrischen Feld \rightarrow Stark-Effekt $W \propto B \cdot M_J^2 + P_0 \cdot E$

 $\mathcal{A} \mathcal{A} \mathcal{A}$

・ロト ・ 四 ト ・ 回 ト ・ 日 ト

Metallcluster Ferroelektrizität

Ferroelektrizität – Nb_n Cluster

Clusterphysik

590

臣

- Für kleine Felder ergibt sich eine schnelle Oszillation ⇒ im Mittel verschwindet das Dipolmoment
- Avoided Crossing der Niveaus mit gleichem M_J
- Für $B \cdot M_J^2 + P_0 \cdot E > W_n$ gibt es kein avoided crossing mehr

$$\Rightarrow P = P_0 rac{M_J}{\sqrt{J(J+1)}}$$

• P springt auf einen großen Wert

 $\mathcal{A} \mathcal{A} \mathcal{A}$

(口)

Anteil der ferroelektrischen Cluster läßt sich durch

$$R_N(T,E) = \left[1 - \exp\left(-\frac{T_g(N)}{T}\right)\right] \cdot \left[1 - \exp\left(-\frac{P_0(N) \cdot E}{k_B \cdot T}\right)\right]$$

beschreiben

- Charakteristische Ordnungstemperatur T_g, bei der die ferroelektrische Phase auftritt. Entspricht z.B. der Curie-Temperatur eines Ferromagneten
- Vergleich mit theoretischen Rechnungen
 - Struktureller Übergang Urprung der Ferroelektrizität bei kleinen Clustern $N \leq 30$, bcc-Struktur ?
 - Elektronischer Effekt f
 ür n > 38 aufgrund des alternierenden Verhaltens ?

- Ferroelektrizität bekannt aus Verbindungskristallen, aber nicht aus mono-atomaren Materialien und erst recht nicht von Metallen
- Dipoldichte 1 D = 1 Debye $\equiv 10^6 V/cm$
- Ferroelektrischer Zustand \rightarrow Abstand des Schwerpunktes der Valenzelektronen vom Ion \cong 1Å !
- Beobachtung an Nb_n Clustern, aber auch an V and Ta Clustern
- Sehr ungewöhnliche Ladungsverteilung im Vergleich zum Metall
 - Es können keine freien Ladungsträger vorhanden sein, da diese diesem Effekt entgegen wirken würden Im metallischen Zustand erfolgt ein effektives Screening → Elektronen sind frei
 - Der Zustand muß kollektiv sein, es müssen also alle Elektronen des Valenzbandes daran teilnehmen

500

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□

590

₹

<ロ> < 四 > < 回 > < 回 > < 回 > < 回 > <

- gerade-ungerade Oszillation ist erstaunlich Im metallischen System würde sich genau das inverse Verhalten zeigen, da das ungepaarte Elektron die Polarisation verstärken sollte !
- T_q scheint für große N gegen die Sprungtemperatur T_c der Supraleitung zu konvergieren ! Beide Effekte könnten somit die gleiche Ursache habe
- Was passiert mit dem Spin in den Niob Clustern ?
- \Rightarrow Stern-Gerlach Messungen an Nb_n Clustern
- Kurze Überlegung, was wir erwarten würden
 - Stern-Gerlach am Atom: Zwei Peaks entsprechend dem Elektronenspin $s_z = \pm 1/2, \mu_z = \pm 1 \mu_B$
 - Paramagnetischer Cluster: Spin koppelt an die Clustergeometrie
 - → Spin präzidiert um die Cluster Achse, wobei der Cluster selber rotiert
 - \Rightarrow Im Mittel eine Ablenkung und nur eine Peak $\equiv \mu \approx 0$
- Spin an Cluster gekoppelt $\rightarrow \mu \approx 0$ und keine Ablenkung
- Spin ungekoppelt $\rightarrow \mu = \pm 1 \mu_B$ und zwei Peaks

SQ Q

토 🖌 🔺 토 🕨 🛛 토

• Magnetische Momente der Nb_n Cluster

- $T \cong 300 \ K$: Spin ist an die Nb_n Cluster gekoppelt
- $T \le 50K$: Zwei zusätzliche Peaks, bei ungeraden Nb_n Clustern \Rightarrow ungekoppelter Spin !
- Berechnung des Paramagnetischen Verhältnis → Anteil der Seitenpeaks zum zentralen Peak und Vergleich mit dem ferroelektrischen Verhältnis
- Ähnliches Verhalten \leftrightarrow Zusammenhang der Effekte !
- Experimente, bei denen Cluster zunächst durch ein dE/dz Feld und anschliessend durch ein dB/dz Feld fliegen bestätigen dies

 $\mathcal{A} \mathcal{A} \mathcal{A}$

5900

Ð,

Supraleitung – Nb_n Cluster

- Kopplung des Spins an die Clustergeometrie erfolgt über die Spin-Bahn Wechselwirkung
- Da die Kopplung des Spins an den Cluster f
 ür kleines T verschwindet, scheint auch die Spin-Bahn Wechselwirkung zu verschwinden
- Genau dieses Verhalten wird auch bei Supraleitern entsprechend der BCS Theorie beobachtet (!), da unterhalb T_c keine "normalen" Elektronen, sondern Cooper-Paare existieren

500

Metallcluster Ferroelektrizität

Supraleitung – Nb_n Cluster

 Auch theoretische Arbeiten weisen darauf hin, daß es in kleinen Clustern entsprechend der BCS Theorie durch Paarkorrelationen zu einem *Parity-Gap* kommt

$$\Delta p = E_{2\ell+1} - \frac{1}{2}(E_{2\ell} + E_{2\ell+2})$$

⇒ Bereits in Clustern aus wenigen Teilchen gibt es eine Art Supraleitung bzw. der Effekt "Cooper-Paar-Bildung", der die normale Supraleitung bewirkt tritt bereits in kleinen Clustern auf !

 Photoelektronenspektroskopie sollte diese Effekte sehen, jedoch gibt es hier noch keine Ergebnisse

 $\mathcal{A} \mathcal{A} \mathcal{A}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□