Coherence of light and matter: from basic concepts to modern applications Part III: G. Grübel Script IV

Coherence based X-ray techniques

Overview, Introduction to X-ray Scattering, Sources of Coherent X-rays, Speckle pattern and their analysis

Imaging techniques

Phase Retrieval, Sampling Theory, Reconstruction of Oversampled Data, Fourier Transform Holography, Applications

X-ray Photon Correlation Spectroscopy (XPCS)

Introduction, Equilibrium Dynamics (Brownian Motion), Surface Dynamics, Non-Equilibrium Dynamics

Imaging and XPCS at FEL Sources

Introduction: Scattering with coherent X-rays

If coherent light is scattered from a disordered system it gives rise to a random (grainy) diffraction pattern, known as "speckle". A speckle pattern is an interference pattern and related to the exact spatial arrangement of the scatterers in the disordered system.

$$I(Q,t) \sim S_c(Q,t) \sim |\sum e^{iQRj(t)}|^2$$

j in coherence volume c= $\xi_t^2 \xi_1$

Incoherent Light: $S(Q,t) = \langle S_c(Q,t) \rangle_{V>>c}$

ensemble average quantify dynamics in terms of the intensity correlation function $g_2(Q,t)$:

$$\begin{split} \mathbf{I}(\mathbf{Q},t) = |\mathbf{E}(\mathbf{Q},t)|^2 &= |\sum b_n(\mathbf{Q}) \exp[i\mathbf{Q} \cdot \mathbf{r}_n(t)|^2 \\ \underline{Note:} \ \mathbf{E}(\mathbf{Q},t) = /d\mathbf{r}' \ \rho(\mathbf{r}') \exp\left[i\mathbf{Q} \cdot \mathbf{r}'(t)\right] \qquad \rho(\mathbf{r}'): \ charge \ density \end{split}$$

 $g_2(\mathbf{Q},t) = \langle \mathbf{I}(\mathbf{Q},0) \bullet \mathbf{I}(\mathbf{Q},t) \rangle / \langle \mathbf{I}(\mathbf{Q}) \rangle^2$

if E(Q,t) is a zero mean, complex gaussian variable:

$$\begin{split} g_2(\mathbf{Q},t) &= 1 + \beta(\mathbf{Q}) < \mathbf{E}(\mathbf{Q},0) \mathbf{E}^*(\mathbf{Q},t) >^2 / < \mathbf{I}(\mathbf{Q}) >^2 \\ <> \text{ ensemble av.;} \\ \beta(\mathbf{Q}) \text{ contrast} \\ g_2(\mathbf{Q},t) &= 1 + \beta(\mathbf{Q}) |f(\mathbf{Q},t)|^2 \\ & \text{with} \quad f(\mathbf{Q},t) = \mathbf{F}(\mathbf{Q},t) / \mathbf{F}(\mathbf{Q},0) \\ \mathbf{F}(\mathbf{Q},0) \text{: static structure factor} \\ N: \text{ number of scatterers} \end{split}$$

 $F(\mathbf{Q},t) = [1/N\{b^{2}(\mathbf{Q})\} | \sum_{m=1}^{N} \sum_{n=1}^{N} \langle b_{n}(\mathbf{Q})b_{m}(\mathbf{Q}) \bullet \exp\{i\mathbf{Q}[\mathbf{r}_{n}(0)-\mathbf{r}_{m}(t)]\} > 0$

• A time correlation function $g_2(Q,\tau)$

 $g_2(\mathbf{Q},t) = 1 + \beta(\mathbf{Q}) |f(\mathbf{Q},t)|^2$ and $f(\mathbf{Q},t) = \exp(-\Gamma t) = \exp(-t/\tau)$

4 Coherence of light and matter: from basic concepts to modern applications, Vorlesung im GrK 1355, SS 2011 A. Hemmerich & G. Gruebel

Surface Sensitivity of X-Rays

refractive index:

 $n = 1 - \delta + i\beta$ = 1.5 - 1.8 visible light

X-rays:
$$\delta = 10^{-5}$$
 (solid matter)
 $\beta << \delta$
 $n < 1$

 $\cos \alpha = n \cdot \cos \alpha'$

total external reflection for: $\alpha < \alpha_c$ for $\alpha' = 0$ (and $\beta=0$): $\alpha_c = \sqrt{2\delta}$ [mrad]

 $\alpha < \alpha_c$: evanescent wave with nanometer penetration

Dynamics at Surfaces: Capillary Waves

Thermally excited capillary waves decorate the surfaces of all liquids depending on the surface tension σ and the viscosity η .

The linear Navier-Stokes equation for simple liquids yields:

Capillary wave:

$$\zeta(\mathbf{r},\mathbf{t}) = \zeta_0 \exp(i\mathbf{q}_{||}\mathbf{r} - \omega \mathbf{t})$$

$$\omega = \omega_0 + i\Gamma$$

Low viscosity: $\sigma \rho / 4\eta^2 q_{||} > 1$ $\Gamma = (2\eta / \rho) q_{||}^2$ $\omega_0 = \sqrt{(\sigma / \rho)q_{||}^{3/2}}$ propagating wave High viscosity: $\sigma \rho / 4\eta^2 q_{||} < 1$ $\Gamma = (\sigma / \eta) q_{||}$

overdamped wave

Dynamics at Surfaces: Capillary Waves

X-Ray Photon Correlation Spectroscopy in Surface Geometry

$\alpha = \beta$: reflectivity	$q_z = (2π/λ) 2 sin α$
---------------------------------	------------------------

 $\alpha_i = \alpha_c$: 50 - 100Å penetration surface sensitivity

α ≠ β: $q_{||} = 2π/λ(cos β-cos α)$ in-plane correlations

Glycerol: a "prototypical" glassformer

Seydel, Madsen, Tolan, Grübel, Press, PRB63, 73409 (2001)

overdamped regime:

 $\Gamma = (\gamma/2\eta)k;$ $\tau_0 = {\eta(T)/\pi \gamma(T)}x_0$

Viscosity of a liquid crystal near the nematic to smecticA transition

A. Madsen, J. Als-Nielsen and G. Grübel, PRL,90,85701(2003)

8

Viscosity of a Liquid Crystal near the Nematic-SmecticA Transition

Dynamics:

viscosity is anisotropic: η_1, η_2, η_3 depending on the relative orientations: **n**, **v**, ∇ •**v**

described by Leslie coefficients $\alpha_1...\alpha_5$, or parameters $\nu_1...\nu_5$ (Harvard notation) ($\nu_4 = \nu_5 = 0$ for incompressible fluids)

Theory:(N-SmA transition) $\eta_1 \sim \exp(E_A/kT)$ $\eta_2 \sim \exp(E'_A/kT)$ $\eta_3 = c(T-T_{NA}/T_{NA})^{-\beta} + non.div.$

Predictions:

eta = 3 $ u_{\parallel}$ - 2 $ u_{\perp}$	[1]
$\beta = 1/3$	[2]
β = 1/2	[3]

- [1] Hossein, Swift, Chen, Lubensky, PRB19,432(1979)
- [2] Jähnig,Brochard, J.Phys.,35,301(1974); deGennes, Sol. State Comm.,10,753 (1972)
 - Langevin,J.Phys.37, 101(1975)

Viscosity of a Liquid Crystal near the Nematic-SmecticA Transition

Non-Equilibrium Dynamics

Domain coarsening in phase separating systems (glasses, alloys,...) e.g. after quenching, aging...

Phase – separating Glass

Two time correlation function:

Phase-Ordering in Cu₃Au

high T: fcc sites occupied by either Cu or Au

T \leq Tc=383 C: ordering with Au on corner and Cu on face sites 4-fold degenerate ground-state

(corners can be choosen in 4 different ways)

groundstates separated by domain walls

domain walls give rise to ellipse shaped superlattice reflections of type [100] quench: domain formation and growth in disordered phase domain coarsening with R ~ $t^{1/2}$

200

000

100

[100] superlattice reflection after quench from 425 C to 370 C

Fluerasu&Sutton, PRL94(2005)55501

Study fluctuations about the average behaviour: XPCS characterize by two-time correlation function

 $< I(t_1) | (t_2) > - < I(t_1) > < I(t_1) >$

 $C(q,t_{1},t_{2}) =$

 $[{<}I^2(t_1){>} {-} {<}I(t_1){>}^2]^{1/2} [{<}I^2(t_2){>} {-} {<}I(t_1){>}^2]^{1/2}$

rescaled correlation time $\tau \sim t_{mean}$

in the low t_{mean} limit

 $\sim t_{mean}^{1/2}$ 10-1 200 150 100 10-2 50 300 100 200 * ₽ 10⁻³ t (min) 0.0069 A-1 10-4 0.0052 A-1 0.0035 A-1 0.0026 A-1 0.0017 A-1 0.0009 A-1 10-5 0.0004 A-1 10-2 10-5 10-4 10-3 dq2*(t-t_0)

in the high t_{mean} limit

with dq = Q - [100]

XPCS – operating range

XPCS

• access to large momentum transfers $(Qmax=2\pi \bullet sin\theta/\lambda)$ or short lengthscales

not subject to multiple scattering

 can be combined with the surface sensitivity of X-rays

Imaging and XPCS at an FEL source

Fc = $(\lambda/2)^2 \bullet$ B(rilliance) B (storage ring) $\approx 10^{20} - 10^{21}$

Length of a storage ring pulse \approx 50-100 ps

(X)FEL key parameters

SASE (self-amplified spontaneous emission)

Idea: Send a perfect electron beam through a very long undulator using the spontaneous radiation as a seed

A.M. Kondratenko, E.L. Saldin, Part. Acc. **10**, 207 (1980) *Generation of coherent radiation by a relativistic electron beam in an ondulator* R. Bonifacio, C. Pellegrini, L. Narducci, Opt. Commun. **50**, 373 (1984) *Collective instabilities and high-gain regime in a free electron laser*

Simulation

GENESIS – simulation for TTF parameters

Courtesy Sven Reiche (UCLA)

Time Structure and Coherence Properties of **XFEL** radiation

for $\Delta \lambda / \lambda / N(=1000) = 10^{-6}$:

Get single spatially and temporally coherent wave packet carrying about 10⁹ photons.

Pulse-to-pulse statistics:

- M=1: single mode strong pulse-to-pulse fluctuations
- M>1: multi-mode

The FLASH facility

$\lambda \geq 4.5 \ nm$

Commissioning: 2004/5 User experiments: 2005

FLASH Overview

FLASH Performance

Double Slit Diffraction at FLASH

λ = 100 nm

Thesis Rasmus Ischebeck

Double Slit Diffraction at FLASH

pixel x-axis binning, bunch(es), mm encoder position, aperture, slits_0p15mm_hori_1147339465.tif - None,

Wavelength λ = 25.6 nm, Slits separation 0.15 μ m, Image is a sum of 10 FEL pulses

Imaging at a FEL

Model structure in 20 nm SiN membrane

Speckle pattern recorded with a single (25 fs) pulse

Reconstructed image

H. Chapman et al.,Nature Physics,2,839 (2006)

model structure

First FEL pulse: 25 fs, 32 nm, 4 x 10¹⁴ W cm⁻² (10¹² ph/pulse)

"destroyed" model structure

Second FEL pulse: 25 fs, 32 nm, 4 x 10¹⁴ W cm⁻² (10¹² ph/pulse) An approach to three-dimensional structures of biomolecules by using single-molecule diffraction images: A simulation

3-D structure (2.5 Å resolution) of rubisco molecule.

Top view of a section (kz=0) of 3-D scattering pattern from 10^6 single molecules (of known relative orientation) each "exposed" by a single 10 fs XFEL pulse (λ =1.5Å, 0.1 μ m beamsize) containing 2·10¹² photons.

Reconstructed 3-D pattern (from 250 2-D projections). Phasing by "oversampling" technique.

(106 kDa)

NOTE: Radiation Damage

J. Miao, K.O. Hodgson and D. Sayre, PNAS, 98, 6641 (2001)

Beam – Sample Interaction

- Magnetic Small Angle Scattering at FLASH (1)

Magnetic Small Angle Scattering:

50 [Co(4Å) / Pt(7Å)] sputtered on 20nm Pt layer on Si_3N_4 membrane, capped with 2nm Pt

FLASH operation 19.12.2007:

SASE on 5th harmonic of 7.97 nm = 1.59 nm = 778 eV

L.-M. Stadler1, S. Streit-Nierobisch1, C.Gutt1, A. Mancuso1, A. Schropp1, J. Gulden1, B. Reime1, I.Vartaniants1, E. Weckert1, B. Pfau2, C.M. Günther2, R. Könnecke2, S. Eisebitt2, O. Hellwig3, F. Staier4, A. Rosenhahn4, T. Wilhein5, D. Stickler6, H. Stillrich6, R. Frömter6, H.P. Oepen6, R. Treusch1, N. Guerassimova1, M. Martins7, K. Honkavaara1, B. Faatz1, S. Schreiber1, M.V. Yurkov1, E.A. Schneidmiller1, A. Brenger1, and G. Grübel1

1 Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, D-22607 Hamburg, Germany

- 2 Berliner Elektronenspeicherring BESSY Gesellschaft für Synchrotronstrahlung, Albert-Einstein-Straße 15, D-12489 Berlin, Germany
- 3 Hitachi Global Storage Technology, 650 Harry Road, San Jose, CA 95120, USA
- 4 Institut für Physikalische Chemie, Universität Heidelberg, Im Neuenheimer Feld 229, D-69120 Heidelberg, Germany
- 5 Institute for Xray-Optics, RheinAhrCampus Remagen, FH Koblenz, Südallee 2, 53424 Remagen, Germany
- 6 Institut für Angewandte Physik, Universität Hamburg, Jungiusstraße 11, D-20355 Hamburg, Germany
- 7 Institut für Experimentalphysik, Universität Hamburg, Luruper Chaussee 149, D-22761 Hamburg, Germany

Magnetic Small Angle Scattering at FLASH (2)

meandering magnetic stripe domain of a CoPt multilayer

Magnetic SAXS pattern:

E = 778.1 eV

ON (Co L_{III}) resonance

Time-dependent Imaging and XPCS at a FEL

Time delay holography (1)

H.N. Chapman et al., Nature 448(2007)676

25 fs long single pulses ($\approx 10^{12}$ ph/pulse) of 32.5 nm light from FLASH impinging on a particle coated (140 nm polystyrene PS particles) Si₃N₄ membrane.

The primary diffraction pattern (blue) interferes with the secondary (red) diffraction pattern arising from the (incident) beam being backreflected by a mirror and diffracted after a time delay Δt from the "exploding" PS particles.

Time delay holography (2)

λ=32.5 nm
 25 fs duration
 0.5•10¹⁴ W/cm²

∆t = 348 fs

Figure 2 | Time-delay X-ray holograms of 140-nm-diameter polystyrene spheres. The time delays were 348 ± 1 fs (a) and 733 ± 2 fs (b). The pulses were 32-nm wavelength, 25-fs duration with intensities $(0.5 \pm 0.2) \times 10^{14}$ W cm⁻². The intensities of the holograms are shown on a

linear greyscale, to a half-width of $4.5 \,\mu m^{-1}$. We derive the time delays and the change in optical path through the exploding particles from the fringe pattern. The particle sizes are determined from the envelope of the intensity.

The intensity envelope of the interference pattern evolves to lower q indicating increasing radii of the particles.

 $\Lambda t = 733 \, \text{fs}$

XPCS at a XFEL source:

XPCS at a FEL source: Movie Mode

The Quest for fast 2-D Detectors

Pilatus detector module: 172 μ m pixel size Silica particles suspended in PPG sum of 5000 frames with 30 ms exposure

data taken at cSAXS/SLS

The Quest for fast 2-D Detectors

Data acquisition time with 0-D detector: \approx 2-3 days

Pilatus: sum of 5000 frames with 30 ms exposure separated by a 20 ms delay btw. 2 frames:

Total data aquisition time: 5000x50 ms = 250 s

Estimated data acq. at XFEL: $3000x(100fs+200ns) \approx 600 \ \mu s$

Delay Line Mode

<u>"Delay Line" Mode:</u> 1ps < Δt < 10ns (1 ps \Leftrightarrow 0.3 mm; 1ns \Leftrightarrow 300 mm) "luminosity limited".

Delay Line for "hard" X-Rays

Si(511) at 8.38 keV

 Δt_{max} = 2.8 ns

W. Roseker, H. Schulte-Schrepping, A. Ehnes, H. Franz, O. Leupold and G. Grübel

* X-Ray delay line

• XPCS at a FEL source: pump-probe mode

XPCS at a FEL source

Magnetization Dynamics

Ferroelectrics

Ultrafast dynamics at surfaces and interfaces of liquids

.

Ultrafast demagnetization

B. Koopmans et al. Nature Materials 9, 259 (2010) C. Boeglin et al. Nature 465, 458 (2010)

Coherence of light and matter: from basic concepts to modern applications, Vorlesung im GrK 1355, SS 2011A. Hemmerich & G. Gruebel

Magnetic SAXS data – time dependant

Time-delay scan for 18 mJ/cm² pumping power, $\Delta t = -1.2$ ps...34.5 ps

Ultra-fast demagnetization from SAXS data

High pump fluence, characteristic demagnetization time below 1 ps

Coherence of light and matter: from basic concepts to modern applications, Vorlesung im GrK 1355, SS 2011A. Hemmerich & G. Gruebel

Polarization Switching in Ferroelectrics

Domain wall motion during polarization switching in ferroelectric Pb(Zr,Ti)O₃

XPCS at a XFEL source: An example

Ultrafast dynamics at surfaces and interfaces in:

o liquids, o membranes, o ...

XFEL:

Onset of non-classical behaviour (Q > 1 nm⁻¹, beyond continuum hydrodynamics)

Study capillary wave dynamics at high Q in model systems (λ =1Å, Q=1 nm⁻¹)

Today: $Q_{max} \approx 10^{-4} \text{ nm}^{-1}$ (water)

$\begin{array}{c|c} \hline \tau \ [s] & countrate \ (FEL) \\ \hline \end{array}$ Water $\approx 25 \ \text{ps} & 20 \\ Mercury & \approx 0.5 \ \text{ps} & 0.3 \ ^* \\ Glycerol & \approx 1 \ \mu \text{s} & 3000 \end{array}$

* expect important deviations due to layering at the surface

G. Grübel et al., TDR XFEL, DESY (2006) G. Grübel et al., NIM B, submitted

C. Gutt et al., PRL 91 (2003)76104

The XFEL

www.xfel.eu

Acknowledgements

GRK 1355

L. Stadler, C. Gutt, A. Robert