Glass physics

- > Introduction
- > Systems
- > Structure
- > Glass transition
- > MCT
- > Metallic glasses
- > Mechanical properties
- > Applications

Hermann Franz

Master course Modern X-ray Physics 12 May 2011

Glasses are materials with "amorphous structure showing a gradual transition from the liquid to the solid without well defined melting point."

- > Favorable conditions for forming
- > Particular mechanical properties

Introduction

- Physical properties change gradually on lowering the temperature
- Cross-over depends on cooling/heating rate
- i.e. properties depend on thermal history
- Glasses are in a frozen in metastable state
- susceptible to crystallization

Examples for glasses in everyday life

Traditional glasses

 SiO_2 , B_2O_3 , P_2O_5 based

Window glass

SiO₂ with sodium or potassium minerals (soda, potash)

Glasses for art work

doped with variety

of elements

Industrial glasses

Polymers

Plastic materials: PE, PMMA, PS.....

SMO (small organic molecules)

Glycerol, OTP, salol, squalane,

Metallic glasses

History

Art of glass making known since

ca 3000 b.c.

Earliest records in Egypt and Mesopotamia, later many records in Rome

Sacophagus of Tut Ench Amun

Glas 2): Becher aus dem Grab Thutmosis' III.; Höhe 8,5 cm, um 1450 v. Chr. (München, Staatliche Sammlung Ägyptischer Kunst)

Structure by X-rays

Reminder:

Scattering amplitude from a crystal

$$\mathsf{F^{crystal}}\left(\mathsf{Q}\right) = \sum\nolimits_{rj} \mathsf{F}_{j} \overset{\mathsf{mol}}{} (\mathsf{Q}) \exp(\mathsf{i} \mathbf{Q} \mathbf{r}_{j}) \bullet \sum\nolimits_{\mathsf{Rn}} \exp\left(\mathsf{i} \mathbf{Q} \mathbf{R}_{n}\right)$$

unit cell structure factor lattice sum

leading to reciprocal lattice

 $\mathbf{G} \bullet \mathbf{R}_{n} = 2\pi \left(hn_{1} + kn_{2} + ln_{3} \right)$

As there is no lattice in amorphous structures we have to treat the whole sample like a molecule

 $F^{mol}(Q) = \sum_{rj} f_j(Q) \exp(iQr_j)$

With the sum running over all atoms in the illuminated volume

Structure by X-rays - temperature dependence

Structure determination of amorphous materials

X-ray diffraction using high energy photons

1st coordination shell

2nd coordination shell

continuum

- + high penetration depths (mm-cm)
- + relatively fast, suitable for in-situ studies

g(R)

- less sensitive to elements
- ASF depend on Q

Neutron diffraction

- + sensitive to different isotopes
- + ASF do not depend on Q
- + probes magnetic state of matter
- large sample volumes
- relatively slow, not suitable for in-situ studies

Extended X-ray Absorption Spectroscopy

- + highly sensitive to elements
- + reveals local atomic configuration
- + relatively fast, suitable for in-situ studies
- restricted sample size, geometry
- rather difficult to quantitatively analyze data on amorphous samples

However, none of these techniques gives a complete 3D image of amorphous structure \otimes

Reverse Monte Carlo modeling

RMC modeling Hermann Franz | Master course mod. X-ray physics | May 2011 | Page 9

Structure by X-rays - temperature dependence II

N. Mattern et al APL 2003

Below T_g: harmonic change, described by Debye behavior At T_g: Transition to lower Debye-temperature + structural changes

The glass transition temperature T_a

$$\eta = \exp\left(-\frac{E_0}{k(T-T_0)}\right)$$

VFT law transition

temperature T_0

Very strong variation of η / τ with temperature

T_g determined by state of the experimental technique

Differential Scanning Calorimetry (DSC)

Differential Scanning Calorimetry

Kautzmann paradoxon

Glass transition at T_K when entropy of the amorphous is lower than in the corresponding crystal

All real systems fall out of equilibrium before

Glass transition

Dynamics in real disordered solids

 microscopic process: rather harmonic in most glasses

• cage (β)- process: intermediate times

 $\begin{array}{l} \alpha \text{- process: long range diffusion,} \\ \text{ very strong T-dependence,} \\ \text{ stretched exponential} \\ f_q \exp(-(t/\tau)^\beta) \end{array}$

glass transition T_c : α and β process merge

Density correlation functions and MCT

$$\phi_q(t) = \left\langle \rho_q^*(t) \rho_q(0) \right\rangle / \left\langle \left| \rho_q(0) \right|^2 \right\rangle$$

$$\ddot{\phi}_q(t) + \Omega_q^2 \phi_q(t) + \Omega_q^2 \int m_q(t-t') \dot{\phi}_q(t') dt' = 0$$

Equation of motion for density correlators including ,,memory term"

- Ergodicity non-ergodicity transition at T_c
- Power laws for correlation functions near T_c
- Order parameter is the ergodicity parameter f_q

 $F_{q}(t) = f_{q} - h_{q}(t/\tau)^{b} + \dots \approx f_{q} \exp(-t/\tau_{K})^{\beta} \qquad \text{\alpha-relaxation}$ $F_{q}(t) = f_{q} + h_{q}(t_{0}/t)^{a} + \dots \qquad \beta\text{-relaxation (cage process)}$ $f_{a} \approx \sqrt{T_{c} - T} \qquad \text{Square-root singularity}$

Density correlation functions and MCT

$$f_q \approx \sqrt{T_c - T}$$
 Square-root singularity

 T_c describes a transition temperature which in contrast to T_g does not depend on experimental parameters.
The glass transition is an ergodic - non ergodic cross over
In most systems T_c is 20% higher than T_g, i.e. the transition is in the "liquid" region

The glass transition temperature T_g and T_c

Density correlation functions and MCT

Figure 4. Comparison of the MCT solution for $\phi_q(t)$ (solid curve) with the asymptotic β -relaxation approximation (dashed curve) (equations (25) and (26)). The dotted curves show the two power laws. (From reference [4].)

Nuclear resonant scattering

Hermann Franz | Master course mod. X-ray physics | May 2011 | Page 22

Quasielastic nuclear resonant forward scattering

Butyl phthalate / ferrocene

Exact treatment of QNFS: I. Sergueev, HF,.. PRB 2003

Non ergodicity parameter

Square-root behaviour as predicted by mode-coupling theory Stretching exponent $\beta = 0.48$, independent of T

Relaxation rates

T. Asthalter, I.Sergueev, HF, et al EPJ B (2001)

Hermann Franz | Master course mod. X-ray physics | May 2011 | Page 26

Neutron scattering results

Masterplot

J. Wuttke et al, Physica B (1997)

Dielectric spectroscopy

FIG. 2. Frequency dependence of the dielectric loss in propylene carbonate at various temperatures. The solid lines are fits with the CD function, the dotted line is a fit with the Fourier transform of the KWW law, both performed simultaneously on ε' . The dash-dotted line indicates a linear increase. The FIR results have been connected by a dashed line to guide the eye. The inset shows $\nu_{\tau} = 1/(2\pi \langle \tau \rangle)$ as resulting from the CD (circles) and KWW fits (pluses) in an Arrhenius representation. The line is a fit using the VFT expression, Eq. (1), with $T_{\rm VF} = 132$ K, D = 6.6, and $\nu_0 = 3.2 \times 10^{12}$ Hz.

U. Schneider et al. PRE (1999)

Bulk Metallic Glasses

Systems

- > Historically first alloy AuSi (1960) cooling with 10⁶ K/s
- > 1969 PdCuSi only 10³ K/s needed
- First commercial amorphous alloy, Vitreloy 1 (41.2% Zr, 13.8% Ti, 12.5% Cu, 10% Ni, 22.5% Be)
- > Families of alloys
 - Pd based: PdCuNiP
 - Zr based: ZrNi, ZrTiCuNiBe (v4), ZrAlNiCuAg, ZrPd, ZrAlCu, ZrAlCuNiFe
 - La based
 - Fe based: FePCAIBGa
 - Cu based: CuZr, CuTiZr
 - Al based: AlLaNi
 - Ni based: NiZr, NiNbY
 - and many more

Systems

1788

Q.K. Jiang et al. | Acta Materialia 56 (2008) 1785-1796

Table 1

The critical sizes (d_c) and thermal parameters for $Zr_{100-x-y}(Cu_zAg_{1-z})_yAl_x$ (x = 7-9 at.%, y = 42-50 at.% and z = 0.75-0.875) alloys, together with other BMGs reported in Refs. [20,27,28] for comparison

Alloys	Critical size	Amorphous ingots (25 g)	$T_{\rm g}$	T_x	T_{m}	T_1	ΔT_x	$T_{\rm rg}$	γ
Zr ₄₆ Cu ₄₆ Al ₈	5 mm	No	715	771	978	1163	56	0.615	0.411
Zr47(Cu4/5Ag1/5)46Al7	<20 mm	No	704	783	1055	1242	79	0.567	0.402
Zr47(Cu4 5/5.5Ag1/5.5)46Al7	<20 mm	Partial	702	782	1056	1123	80	0.625	0.428
Zr47(Cu5/6Ag1/6)46Al7	<20 mm	Partial	703	781	1060	1125	78	0.625	0.427
Zr47(Cu6/7Ag1/7)46Al7	20 mm	Partial	709	774	1057	1118	65	0.634	0.424
Zr45(Cu4/5Ag1/5)48Al7	20 mm	Partial	710	783	1062	1208	73	0.588	0.408
Zr45(Cu4.5/5.5Ag1/5.5)48Al7	>20 mm	Yes	711	785	1063	1154	74	0.616	0.421
Zr45(Cu5/6Ag1/6)48Al7	>20 mm	Yes	713	786	1061	1159	73	0.615	0.420
Zr43(Cu5/6Ag1/6)50Al7	20 mm	No	738	770	1075	1127	32	0.65	0.413
Zr50(Cu4/5Ag1/5)42Al8	20 mm	Partial	703	774	1089	1155	71	0.609	0.417
Zr50(Cu5/6Ag1/6)42Al8	<20 mm	Partial	701	764	1095	1138	63	0.616	0.415
Zr48(Cu3/4Ag1/4)44Al8	20 mm	Partial	706	770	1092	1218	64	0.580	0.400
Zr48(Cu4/5Ag1/5)44Al8	>20 mm	Yes	707	762	1090	1132	55	0.625	0.414
Zr48(Cu4 5/5.5Ag1/5.5)44Al8	>20 mm	Yes	706	777	1089	1129	71	0.625	0.423
Zr48(Cu5/6Ag1/6)44Al8	>20 mm	Yes	705	778	1090	1122	73	0.628	0.426
Zr48(Cu6/7Ag1/7)44Al8	>20 mm	Yes	706	778	1089	1127	72	0.626	0.424
Zr48(Cu7/8Ag1/8)44Al8	20 mm	Partial	707	779	1095	1127	72	0.627	0.425
Zr46(Cu4/5Ag1/5)46Al8	>20 mm	Yes	710	776	1091	1228	66	0.578	0.400
Zr46(Cu4.5/5.5Ag1/5.5)46Al8	>20 mm	Yes	703	775	1088	1126	72	0.624	0.424
Zr46(Cu4 5/5.5Ag1/5.5)46Al8 ingots	>20 mm	Yes	704	776	1089	1130	72	0.623	0.423
Zr46(Cu5/6Ag1/6)46Al8	>20 mm	Partial	710	778	1088	1120	68	0.634	0.425
Zr53(Cu5/6Ag1/6)38Al9	20 mm	Partial	711	767	1089	1129	56	0.63	0.417
Zr51 (Cu4 5/5.5 Ag1/5.5)40 Al9	20 mm	Partial	703	758	1092	1144	55	0.615	0.410
Zr49(Cu5/6Ag1/6)42Al9	20 mm	Partial	708	767	1092	1242	59	0.57	0.393
Cu43Zr43Al7Ag7 [27]	8 mm	-	722	794	1125	-	72	-	-
Zr41.2Ti13.8Cu12.5Ni10Be22.5 [28]	25 mm	-	623	672	932	996	49	0.67	0.415
Pd40Cu30Ni10P20 [28]	72 mm	_	575	670	804	840	95	0.72	0.473
La62Al14Cu11.3Ag2.7NisCos [20]	>20 mm	-	422	482	642	727	60	0.580	0.419
La65Al14Cu9.2Ag1 8NisCos [20]	35 mm	-	419	459	641	687	40	0.610	0.415

"Yes", "partial" and "no" are roughly defined by eyes for ingots having volume fractions of larger than about 80%, 30-80% and less than about 30% for the amorphous component, respectively.

Couple of empirical rules in literature

However up to now still empirical (trail and error) development

- Three or more alloy components
- Very different atomic radii
- Negative heat of mixing
- Low eutectic
- Competing crystalline phases

Structure vs. macroscopic properties

