FEL Facilities

- Überblick
- Die TESLA Test Facility (TTF)
- FLASH
- Der europäische X-FEL

FELs – Überblick

- Es gibt weltweit bereits einige FEL's (http://sbfel3.ucsb.edu/www/vl_fel.html)
- Die meisten existierenden Geräte arbeiten als Oszillatoren mit Infrarot Bereich
- Beispiel FELIX (Niederlande)

FELs – Überblick

- Photonenenergiebereich 4.5 $240~\mu\mathrm{m}$
- Optischen
 Parametrischem
 Amplifier (OPA)
 2.5 18 μm und
 230 460 nm

FELs – Überblick

Betrieb eines FEL in dem Speicherring ELETTRA (Trieste, Italien)

• Im Oszillatorbetrieb ist der UV Bereich bis $\lambda = 190$ nm zugänglich.

XUV und Röntgen FELs

 Zur Zeit werden verschiedene XUV und Röntgen FEL's geplant, die auf dem SASE Prinzip oder aber dem HHG Prinzip beruhen.

FEL	Ort	Energiebereich	Inbetriebnahme
TTF Phase I	DESY Hamburg	-12 eV	bis 2002
FLASH	DESY Hamburg	20-200 eV	2005
X-FEL	DESY Hamburg	0.5-14.4 keV	2012
LCLS	SLAC Stanford	0.8-10 keV	2008
SCSS	Spring8 Japan	10 keV	2008
FERMI	ELETTRA Trieste	10-1000 eV	2010(?)
MAX 4	MAXLab Lund	10-1000 eV	?
4GLS	Daresbury UK	?	?
	•		

TTF 1

Design des FEL an der TESLA Test Facility (TTF) in der 1. Phase

- Elektronen werden mit einer Laserquelle erzeugt
- Beschleunigung mit zwei Supraleitenden Niob Cavities (T = 2 K)
- Kompression des Elektronenbunch mit einem magnetischen Bunchkompressor
- 15 m langer Undulator
- Die TTF Phase 1 wurde im Frühjahr 2002 erfolgreich abgeschlossen 4 □ → 4 □ → 4 □ → □ □

Röntgenphysik 355

TTF1 – Die Elektronenquelle

- Aus den Eigenschaften des FEL Verstärkers folgt, daß der Elektronenbunch von sehr hoher Qualität sein muß
 - kleine Emittanz
 - kleiner Energiespread
- Ansonsten ist die Verstärkung zu klein!
- Elektronenstrahlqualität muß über die gesamte Länge des Undulators von einigen 10 m (TTF) bis zu einigen 100 m (X-FEL) erhalten bleiben
- Um sehr kurze Lichtpulse zur erhalten, muß auch der Elektronenbunch sehr kurz sein
- Verwendung eines gepulsten Lasersystems, um Elektronen zu erzeugen.

TTF1 – Die Elektronenquelle

- Fokusierung eines Frequenzvervierfachten ND:YLF Lasers auf die Kathode (Max Born Institut (MBI) Berlin)
- Extraktion der in dem Laserplasma entstehenden Elektronen mit einem elektrischen Feld
- Erzeugung eines kurzen Elektronenbunch mit ca. 1 nC
- Beschleunigung des erzeugten Bunches mit einem ersten supraleitenden Beschleunigungsmodul

TTF1 – Bunch Kompressor

 Um den Puls weiter zu verkürzen wird eine magnetische Bunchkompression eingesetzt.

TTF1 – Undulator

• 3 Undulatormodule mit einer Gesamtlänge von 15 m

TTF1 - Undulator

 Steerer Magnete zum "Durchfädeln" des Elektronenstrahls durch den Undulator

TTF1 - Gesamtaufbau

Gesamtplan der TTF1 Facility am Hasylab bei DESY

TTF1 – Zeitstruktur

- Durch die Energieversorgung der Hochfrequentcavities zur Beschleunigung der Elektronen ist die Zeitstruktur des FEL vorgegeben
- 1.3 GHz Radiofrequenzleistung von einem 10 MW Clystron versorgt die Cavities für ca. 1 ms bei einer maximalen Repetitionsrate von 10 Hz.
- Jeder Bunch/Puls besteht nun selber wieder aus einer Anzahl an Mikrobunchen

TTF1 – Parameter

	Pha	FLASH	
	(Design)	(Erreicht)	
Elektronenstrahl			
Energie (GeV)	0.25	0.24	1.0
Emittance (π nm rad)	8.0	12	1.0
Bunch Ladung (nC)	1	2.8	1
RMS Bunch Länge	240	30	48
RMS Bunch Breite	68	110	67
Bunche pro Sekunde	18000	bis 70	8000
Photonenstrahl			
Energy (eV)	12	12	192.8
Peak Leistung (GW)	0.5	1.0	2.3
Photonen pro Bunch	$2.1 \cdot 10^{14}$	$2.5 \cdot 10^{13}$	$3.9 \cdot 10^{13}$
Mittlere Brillianz	$2.0 \cdot 10^{21}$	$1.0 \cdot 10^{17}$	$1.0 \cdot 10^{23}$
Peak Brillianz	$4.3 \cdot 10^{28}$	$2.4 \cdot 10^{28}$	$2.2 \cdot 10^{30}$
FWHM Spektrale Bandbreite	0.64	1.0	0.46

FLASH

- Der TTF-FEL in der Phase 1 diente vor allem zum Testen des SASE Prinzips und um die Physik des FEL zu verstehen
- Es wurden aber auch zwei Experimente durchgeführt, die später noch beschrieben werden
- FLASH (früher Phase 2 des TTF-FEL) ist Mitte 2005 in Betrieb gegangen und deckt den Bereich von 20-200 eV Photonenenergie ab
- FLASH liefert Strahlung bis 6.5 nm (190 eV)
- FLASH steht für Nutzer zur Verfügung stehen, wie ein normaler Speicherring für Synchrotronstrahlung, allerdings steht nur sehr wenig Strahlzeit zur Verfügung
- Zur Zeit Upgrade für höhere Energien

FLASH – User Facility

FLASH – User Facility

- Verschiedene Strahlrohre (Beamlines) am FEL
- Nur ein Strahlrohr hat Licht
- Strahlrohre ohne Monochromator und kleinem Fokus für maximale Leistungsdichten
- Strahlrohre hinter einem Monochromator für hochaufgelöste Spektroskopie
- Synchronisierter Femtosekunden Laser im sichtbaren (VIS)
 Spektralbereich für Pump-Probe XUV-VIS Experimente
- Pulsdauer eines FLASH-Pulses ca. 10-30 fs
- Es konnte erstmalig verschiedene Experimente durchgeführt
 - Zeitaufgelöste Experimente nach eine Rumpfniveauanregung
 - Nichtlineare Effekte im XUV und Röntgenbereich
 - Experimente an sehr verdünnten Systeme (Cluster, Radikale, ...)

TTF2 – User Facility

Der TESLA X-FEL

Im Rahmen des TESLA Projektes
 Tera Electron Volt

Energy

Superconducting

Linear

Accelerator ist auch ein FEL für den Röntgenbereich (X-FEL) geplant

- Plan: Ausnutzen eines Teils des 33 km langen Beschleunigers von TESLA für den X-FEL
- Photonenergie 500 eV-14.4 keV
- User Facility mit mehreren FEL's, die parallel betrieben werden

Der TESLA X-FEL

- Ursprüngliche Planung
- Entscheidung des BMBF im Frühjahr 2003: Bau eines X-FEL, Noch keine Festlegung eines Standortes für TESLA
- X-FEL im Rahmen eines europäischen Projektes
- Wahl eines neuen Standortes für den X-FEL

Der X-FEL – Standort

370

Europäischer X-FEL – Die Trasse

Europäischer X-FEL – Die Trasse

www.xfel.net

Europäischer X-FEL – Der Tunnel

Europäischer X-FEL – Der Tunnel

Europäischer X-FEL – Die FEL Halle

Europäischer X-FEL – Die FEL Halle

Europäischer X-FEL – Die Strahlrohre

Europäischer X-FEL – Parameter

	TTF		X-FEL			
	Phase 1	FLASH	1.0 nm	0.1 nm		
Elektronenstrahl	Elektronenstrahl					
Energie (GeV)	0.24	1.0	23	25		
Emittance (π nm rad)	12	1.0	0.04	0.03		
Bunch Ladung (nC)	2.8	1	1	1		
RMS Bunch Länge	30	48	25	25		
RMS Bunch Breite	110	67	23	38		
Bunche pro Sekunde	bis 70	72000	57500	57500		
Photonenstrahl						
Energy (eV)	12	192.8	1231	12311		
Peak Leistung (GW)	1.0	2.3	185	37		
Photonen pro Bunch	$2.5 \cdot 10^{13}$	$3.9 \cdot 10^{13}$	1 · 10 ¹³	1.8 · 10 ¹²		
Mittlere Brillianz	$1.0 \cdot 10^{17}$	$1.0 \cdot 10^{23}$	$5.2 \cdot 10^{24}$	4.9 · 10 ²⁵		
Peak Brillianz	$2.4 \cdot 10^{28}$	$2.2 \cdot 10^{30}$	$9.3 \cdot 10^{32}$	8.7 · 10 ³³		
Spektrale Bandbreite	1.0	0.46	0.4	0.08		

X-FEL – Undulatoren

Device	Тур	E_e	$\hbar\omega$	λ_u	Gap	L _{Sat}	L _{Tot}
		GeV	keV	mm	m	m	
SASE 1	planar	30	4.9 - 12.4	60	19-12	220-150	323.5
		25	3.5 - 12.4		22-12	220-120	
		20	2.5 - 8.25		22-13	175-100	
SASE 2	planar	25	14.4	45	12	210	311.1
SASE 5	circular	23	0.5 - 3.1	107	35-12	120-60	176.9
		15	0.2 - 1.2		35-12	95-50	

- Mit den verschiedenen SASE Undulatoren läßt sich somit ein sehr großer Energiebereich abdecken
- Sehr hohe Leistungsdichte
- Extrem hohe Brillianz
- Scharfer SASE Peak auf einem breiten Untergrund spontaner Strahlung

379

Europäischer X-FEL – Undulator Spektren

LCLS - Linac Coherent Light Source

 Am SLAC in Standford, California wird zur Zeit auch ein X-FEL entwickelt

- 1 km langer zusätzlicher Linearbeschleuniger integriert in den schon existierenden 2 km Beschleuniger
- Nur ein SASE
 Undulator für den
 Röntgenbereich
- Betrieb seit Anfang 2009

4. Generation Light Sources

4. Generation Light Sources

- Kombination eines Linearbeschleunigers und eines Speicherring
- Beschleunigung im Linearbeschleuniger
 - → Höhere Elektronenstrahlqualität
 - → höhere Brillianz
- Energy Recovery Linac (ERL)
 - → Elektronen werden nach einem Umlauf wieder in die Cavities geleitet
 - ightarrow Elektronen induzieren ein Feld in den Cavities und verlieren Energie
 - → Energierückgewinnung
- Kombination mit einem Freie Elektronen Laser (FEL)
- http://www.4gls.ac.uk/

FEL – Seeding

- Das Spektrum eines SASE Undulators hat sehr viele scharfe Spikes
- Ursache ist, das der FEL Prozess aus dem Schrotrauschen heraus startet
- Wie kann man das umgehen ?
- Lösung: Es muß XUV/Röntgenstrahlung ohne statistische Fluktuationen verstärkt werden!
- Strahlung wird von einem ersten Undulator erzeugt, der im linearen Betrieb läuft
- Ein Monochromator mit der Bandbreite eines Spikes selektiert einen Spike
- Verstärkung bis zur Sättigung in einem zweiten Undulator hinter dem Monochromator
- Einbau in FLASH ist für ??? vorgesehen

FLASH – Seeding

 Lichtpuls des ersten SASE FEL muß im zweiten Undulator mit dem gleichen Elektronenbunch, der den Lichtpuls erzeugt hat überlagert werden.

TTF2 – Seeding

- Spektrum mit vielen Spikes ohne Seeding und einer Auflösung im Bereich von 0.5%
- Durch das Seeding erhält man als Output Signal nur einen scharfen Peak mit einer Auflösung im Bereich von $E/\Delta E \cong 20000$
- Keine statistischen Schwankungen des FEL Signals mehr aufgrund der exp(I/ < I >) Statistik

TTF2 – Monochromator

- Hinter dem FEL wird ein weiterer Monochromator benötigt
- Aufgaben
 - Diagnose der FEL Strahlung
 - Monochromatisierte Strahlung mit $E/\Delta E \geq 50000$ für höchstaufgelöste Spektroskopie
- Problem: Sehr hohe Leistungsdichte der FEL Strahlung kann optische Komponenten zerstören
- Lösung
 - Verwendung von DLC (Diamond Like Carbon) Schichten auf einem Silizium-Spiegel
 - Einfallswinkel relativ zur Oberfläche der optischen Komponenten muß möglichst klein sein

TTF2 - Monochromator

