Schwingungen (Vibrationen) zweiatomiger Moleküle

- Das Molekülpotential ist die Potentialkurve für die Schwingung
- H₂ Molekül

 Annäherung der Potentialkurve durch eine Parabel in der Nähe des Gleichgewichtsabstandes R₀

Klassisch

$$E_{\rho}(R) = \frac{1}{2}k(R - R_0)^2$$
 (1)

 Übergang zum Schwerpunktsystem und Einführung von Relativkoordinaten

$$M_{red} \cdot \frac{d^2(R - R_0)}{dt^2} = -k(R - R_0)$$
(2)

• Ansatz $R - R_0 = A \cdot \cos \omega t$

$$-M_{red} \cdot \omega^2 \cdot A \cdot \cos \omega t = -k \cdot A \cdot \cos \omega t \text{ mit } \omega = \sqrt{\frac{k}{M_{red}}}$$
(3)

Quantenphysik:

Schrödingergleichung des harmonischen Oszillators

$$\left[-\frac{\hbar^2 \Delta}{2M_{red}} + \frac{k}{2}(R - R_0)^2\right] \Psi_{vib}(R - R_0) = E_{vib}\Psi_{vib}(R - R_0) \quad (4)$$

• Die Eigenfunktionen des harmonischen Oszillators sind die hermitschen Polynome

$$\frac{v \quad E_v \quad \Psi}{0 \quad \frac{1}{2}\hbar\omega \quad A_0 \cdot e^{-\frac{\alpha}{2}\Delta R^2}}$$

$$1 \quad \frac{3}{2}\hbar\omega \quad A_1 \cdot 2\Delta R \cdot e^{-\frac{\alpha}{2}\Delta R^2}$$

$$2 \quad \frac{5}{2}\hbar\omega \quad A_2 \cdot (1 - 2\alpha\Delta R^2) \cdot e^{-\frac{\alpha}{2}\Delta R^2}$$
mit $\alpha = \frac{1}{\hbar}\sqrt{M_{red} \cdot k}$

 Schwingungswellenfunktionen und Aufenthaltswahrscheinlichkeit im harmonishen Oszillator-Potential

- IR-Spektrum des harmonischen Oszillators zeigt nur eine Linie $(\Delta v = \pm 1,$ äquidistante Niveaus)
- Aus dem Vibrationsspektrum kann die Kopplungskonstante *k* ermittelt werden
- Das Modell eines harmonischen Oszillators ist aber sicher etwas zu einfach, da das Potential nur im Grundzustand einem harmonischen Oszillator ähnelt

Der anharmonische Oszillator

 Realistischere Beschreibung der Schwingung durch Morse Potential

$$E_{el}(R) = D_e \left(1 - e^{-\beta(R-R_0)}\right)^2 \text{ mit } \beta = \sqrt{\frac{k}{2D_e}}$$
 (5)

- Harmonische Näherung für kleine Auslenkungen
- Entwicklung von $(1 x)^2$

$$E_{pot}(R) = D_e(1 - 1 + \beta(R - R_0))^2$$
 (6)

• In 1. Näherung ist somit

$$E_{pot}(R) \approx D_e \beta^2 (R - R_0)^2, \tag{7}$$

was genau einer Parabel entspricht

Schwingungs-Rotations-Wechselwirkung

- Rotation und Vibration können nicht getrennt beobachtet werden, da ein schwingendes Molekül eigentlich auch immer rotiert
- Effektives Potential in der Schroedingergleichung f
 ür die Kernbewegung:

$$V_{eff}(R,J) = V(R,J=0) + rac{J(J+1)\hbar^2}{2M_{red}R^2}$$
 (8)

 Energiewerte *E*(ν, *J*) und mittlerer Kernabstand hängen jetzt außer von *V*(*R*) noch von der Schwingungs- und Rotationsquantezahl ab.

A (10) A (10)

Schwingungs-Rotations-Wechselwirkung

- Während einer Rotationsperiode macht ein Molekül i.A. viele Schwingungen ($\approx 10 100$)
- Da L = I · ω zeitlich konstant ist, aber I sich periodisch ändert , schwankt ω zeitlich im Takt der Schwingungsfrequenz
 → Rotationsenergie variert entsprechend mit R
- Da die Gesamtenergie $E = E_{ges} = E_{El} + E_{Vib} + E_{Rot}$ konstant ist, wird im schwingenden Rotator periodisch Energie ausgetauscht zwischen Schwingung, Rotation und potentieller Energie
- Rotationsenergie des schwingenden Moleküls beschreibt den zeitlichen Mittelwert, gemittelt über viele Schwingungsperioden

・ロト ・ 四ト ・ ヨト ・ ヨト …

Übergangswahrscheinlichkeiten und Matrixelemente

 In der Elektrodynamik wird gezeigt, dass von einem klassischen schwingenden Dipol mit dem elektrischen Dipolmoment:

$$\vec{\mu} = \boldsymbol{q} \cdot \vec{\boldsymbol{r}} = \vec{\mu_0} \cdot \sin t \tag{9}$$

die mittlere Leistung \overline{P} abgestrahlt wird:

$$\overline{P} = \frac{2\overline{\mu^2}\omega^4}{3 \cdot 4\pi\epsilon_0 c^3} \tag{10}$$

mit: $\overline{\mu^2} = \frac{1}{2}\mu_0^2$

Übergangswahrscheinlichkeiten und Matrixelemente

• Quantenmechanik: Ersetzte Mittelwert $\overline{\mu}$ des elektrischen Dipolmoments eines Atoms mit Leuchtelektron im stationären Zustand $(n, l, m_l, m_s) = i$ durch den Erwartungswert:

$$\langle \mu \rangle = \boldsymbol{e} \cdot \langle \boldsymbol{r} \rangle = \boldsymbol{e} \cdot \int \psi_i^* \boldsymbol{r} \psi_i \boldsymbol{d} \tau$$
 (11)

 Für einen Übergang E_i → E_k definiert man das Dipolmatrixelement als Erwartungswert des Übergangsdipolmoments

$$\mathcal{D}_{ik} = \langle \mu_{ik} \rangle = \boldsymbol{e} \cdot \int \psi_k^* \boldsymbol{r} \psi_i \boldsymbol{d} \tau$$
 (12)

 Man kann zeigen, dass f
ür den Einsteinkoeffizienten der spontanen Emission gilt:

$$A_{ik} \propto \left| \int \psi_k^* r \psi_i d\tau \right|^2 \tag{13}$$

June 22, 2010

12

Übergangswahrscheinlichkeiten und Matrixelemente

• Bei der Absorption hängt die Übergangswahrscheinlichkeit zusätzlich noch von der Intensität der einfallenden Lichtwelle ab:

$$W_{ki} \propto |E_0 \cdot D_{ki}|^2 \tag{14}$$

 Während bei Atomen D_{ki} nur vom Ortsvektor r des Leuchtelektrons abhängt, können bei Molekülen auch die Kerne mit der Ladung Ze zum Dipolmoment beitragen:

$$\vec{\mu} = -e \sum_{i} r_{i} + Z_{1} e R_{1} + Z_{2} e R_{2} = \vec{\mu_{el}} + \vec{\mu_{K}}$$
 (15)

Es folgt:

$$D_{ki} = \int \psi_i^* \mu \psi_k d\tau_{el} d\tau_K$$
(16)

(Gesamtwellenfunktionen der beteiligten Zustände ψ_i , ψ_k)

Matrixelemente in Born-Oppenheimer-Näherung

 Die Born-Oppenheimer N\u00e4herung erlaubt die Separation von Elektronen-, Vibrations- und Rotationsbewegung, d.h. die Gesamtwellenfunktion l\u00e4\u00df sich in ein Produkt von elektronischer und Kernwellenfunktion aufspalten:

$$\psi(\vec{R},\vec{r}) = \psi_{el}(R,r)\psi_{\kappa}(\vec{R})$$
(17)

$$\psi(\vec{R},\vec{r}) = \psi_{el}(R,r)\psi_{Vib}(R)\psi_{Rot}(\vartheta,\varphi)$$
(18)

(Produktdarstellung der Wellenfunktion)

• Die Gesamtenergie eines Zustands ist damit:

$$E = E_{ges} = E_{el} + E_{Vib} + E_{Rot}$$
(19)

Matrixelemente in Born-Oppenheimer-Näherung

Wit unterscheiden jetzt zwei Fälle:

 Die Niveaus *i* und *k* gehören zum selben elektronischen Zustand, d.h. der Dipol-Übergang erfolgt zwischen zwei Schwingungs-Rotations Niveaus innerhalb desselben elektronischen Zustands:

$$\mathcal{D}_{ik} = \int \psi_K^{k*}(\vec{R}) \mu_K \psi_K^i(\vec{R}) d\tau_K$$
(20)

 Wellenfunktionen und Dipolmomente des molekularen Kerngerüstes sind maßgeblich

Matrixelemente in Born-Oppenheimer-Näherung

• Übergange zwischen verschiedenen elektronischen Zuständen:

$$D_{ik} = \int \psi_K^{k*}(\vec{R}) D_{ik}^{el} \psi_K^i(\vec{R}) d\tau_K$$
(21)

mit

$$D_{ik}^{el} = \int \psi_{el}^{k*} \mu_{el} \psi_{el}^{i} d\tau_{el}$$
(22)

 Elektronische Übergänge hängen von Dipolmoment des angeregten Elektrons ab und von den elektronischen, aber auch von den Kernwellenfunktionen der beteiligten Zustände

Struktur der Spektren zweiatomiger Moleküle

- Optische Dipolübergänge: $\Delta v = \pm 1$, da die Parität wechseln muß
- Ankopplung an eine elektromagnetisch Welle, wenn $\frac{d\mu_{el}}{dR} \neq 0$, d.h. das elektrische Dipolmoment muß sich ändern
- Keine Ankopplung an N₂, O₂, H₂
- <u>Aber</u>: Diese Moleküle sind Raman-aktiv und können durch inelastische Raman-Streuung angeregt werden !
 (^{∂α}/_{∂R} ≠ 0)

Rotations-Vibrationsspektren

- Wie sehen typische Molekülspektren aus ?
- CO-Spektrum mit niedriger Auflösung

- Eine Grundschwingungsbande (Δv = ±1) und schwächere Obertöne (Δv > 1)
- Obertonbanden erscheinen in erster Linie aufgrund der Anharmonizität im Potential des schwingenden Moleküls

Rotations-Vibrationsspektren

- CO-Spektrum der Hauptbande mit hoher Auflösung
- Beobachtung der Rotationsstruktur

◆ロ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Rotations-Vibrationsspektren

Rotations-Vibrationsspektren

- HCI-Spektrum der Hauptbande mit hoher Auflösung
- Beobachtung der Rotationsstruktur

Schwingungen dreiatomiger Moleküle

• Schwingungen nichtlineare (gewinkelte) Moleküle

▲ 同 ▶ → 三 ▶

Beispiel H₂O

asymmetrische Streckschwingung

Rotations-Vibrationsspektren komplizierter Moleküle

Untersuchung der Kerndynamik

 Von zeitaufgelöster Photografie zu zeitaufgelöster Femtosekundenspektroskopie

Untersuchung der Kerndynamik

• Die Standartmethode ist die Pump-Probe Spektroskopie

- Nobel-Preis für Chemie 1999: A. Zewail
- Idee: Verwende zwei ultrakurze Laserpulse und beobachte wie sich die elektronische und geometrische Struktur des Moleküls auf der Femtosekundenzeitskala ändert

Untersuchung der Kerndynamik

Quelle: http://www.fgsw.uni-stuttgart.de

June 22, 2010 26