Coherent Diffraction Imaging (CDI) mit X-Ray FELs

 Rekonstruktion der 3D Struktur <u>nicht</u>-periodischer molekularer Strukturen (z.B. Proteine) aus dem Beugungsbild

Coherent Diffraction Imaging (CDI)

• Abbilddung ohne Linse:

iterativer Algorithmus ersetzt Linse, um aus Beugungsbildern im reziproken Raum Abbildungen im Ortsraum zu erzeugen (Nature 400, 342 (1999))

Figure 1 A scanning electron microscope image of the specimen. The specimen Figure 3 An optical microscope image of the specimen was labicised by deposing gold dota, seth ~100 rm in diameter and 80 rm thick on a sile on thick mean sile on the specimen.

Figure 2 A diffection pattern of the specimen (using a logarithmic intensity scale). The central 15-pixel-radius circular area is supplied by the squared magnitude of the Fourier transform of the optical microscope image (Fig. 3).

Figure 4 The specimen image as reconstructed from the diffraction pattern of Fig. 2.

Auflösung ist beugungsbegrenzt (keine Aberationen)!

Coherent Diffraction Imaging (CDI)

 Das Bild eines Lichtpunkts, das von einer kreisförmigen Linse endlicher Größe abgebildet wird, ist <u>nicht</u> ein Punkt, sondern ein Beugungsscheibchen, umgeben von konzentrischen Ringen. Dieses Phänomen wird nicht durch Abbildungsfehler, sondern durch Beugung des Lichts am Rand der Linse hervorgerufen!

 Abbe'sche Auflösungsgrenze:

m

$$d_{min} = rac{\lambda}{2 \cdot NA}$$
 (1)
hit $NA = n \cdot \sin lpha$

Coherent Diffraction Imaging (CDI) mit X-Ray FELs

• Abbildung im Einzelschuss (Nature 406, 752 (2000))

• kurze fs-Pulse ermöglichen "molekulare Filme"

• Auflösung ist dosisabhängig

Grundlagen zur Strukturanalyse

- Wie lassen sich geometrische Strukturen experimentel bestimmen ?
 - Röntgenbeugung
 - Elektronenbeugung
 - Neutronenbeugung
 - Spektroskopie

★ ∃ ► 4

Grundlagen zur Strukturanalyse

• Beugungsexperimente:

Die Wellenlänge sollte in der Größenordnung der atomaren Abstände liegen

Wellenbild

de Broglie Wellenlänge $\lambda = \frac{h}{p}$

Röntgenbeugung

$$\lambda = \frac{12.4}{h\nu[keV]} \cdot 10^{-10} m$$

 $10 \ keV = 1.2 \cdot 10^{-10} m$

Elektronenbeugung

$$\lambda = \frac{h}{p} = \frac{12}{\sqrt{E_{kin}[eV]}} \cdot 10^{-10} m$$

 $100 eV = 1.2 \cdot 10^{-10} m$

Grundlagen zur Strukturanalyse

Neutronenbeugung

$$\lambda = \frac{h}{p} = \frac{0.28}{\sqrt{E_{kin}[eV]}} \cdot 10^{-10} m$$

0.08 $eV = 80 \ meV = 1 \cdot 10^{-10} \ m \Leftrightarrow$ thermische Neutronen aus einem Forschungsreaktor ILL Grenoble, FRM II in Garching bei München

Grundlagen zur Strukturanalyse

• • • • • • • • • • • • •

Grundlagen zur Strukturanalyse

- Es gibt verschiedene Methoden mittels Röntgenbeugung die Struktur von Materie zu bestimmen
- Für Einkristalle wird das Laue-Verfahren angewandt

Beugung – Laue Verfahren

- Beugungbild eines Myoglobin-Kristalls mit CO-Ligand (MbCO) aufgenommen mit einem einzigen 150ps Synchrotronlicht Puls
- Δr = 0.18nm (Größe des CO-Moleküls)
 ESRF Highlights 1996/1997

Beugung – Laue Verfahren

Beugung am Kristall

- Wie können wir das Zustandekommen von Beugungsbildern verstehen und wie lässt sich aus den Beugungsbildern die Information über die Kristallstruktur gewinnen
- Wir betrachten die Bewegung von Wellenfronten (kinematische Theorie)

• Phasenunterschied der am Ursprung und am Punkt *r_j* gestreuten Strahlen

$$\Delta \phi(\vec{r}_j) = \vec{k} \cdot \vec{r}_j - \vec{k'} \cdot \vec{r}_j = \Delta \vec{k} \cdot \vec{r}_j$$
⁽²⁾

Streuamplitude

Streuamplitude F

Amplitude der gestreuten Welle durch Summation der Beiträge aller Gitterpunkte unter Berücksichtigung der Phasen

$$F = \sum_{r_j} f_j e^{-i\Delta\phi(r_j)}$$
(3)

f_j Streuvermögen der Struktureinheit am Gitterpunkt Ist für alle Gitterpunkte gleich

Beispiel:

Intensität der gebeugten Welle für einen würfelförmigen Kristall der durch die Basisvektoren \vec{a} , \vec{b} , \vec{c} aufgespannt wird.

• Maxima der Intensität |F|² erhält man für

$$\Delta \vec{k} \cdot \vec{a} = h \cdot 2\pi$$

 $\Delta \vec{k} \cdot \vec{b} = k \cdot 2\pi$
 $\Delta \vec{k} \cdot \vec{c} = l \cdot 2\pi$

Streuamplitude

- Realer Kristall aufgebaut aus Atomen, Ionen, Molekülen ...
- 1. Schritt: Bestimmung des Streuvermögens der Struktureinheit, also z.B. eines Atoms oder Moleküls (Basis)
- Besteht die Basis aus mehr als einem Atom ergibt sich der Strukturfaktor aus der Summation über die Atome der Basis
- 2. Schritt: Summation über alle Gitterpunkte

Atomformfaktor

- 1. Schritt
- Streuung von Photonen erfolgt an den gebundenen Elektronen
 - \rightarrow Streuung wird bestimmt durch Elektronenverteilung der Atome
- Phasenverschiebung zwischen den auslaufenden Strahlen

$$\Delta \phi(\vec{r}) = \Delta \vec{k} \cdot \vec{r}$$

Atomformfaktor

 Integration über die gesamte Ladungsverteilung ρ_j(r
) des Atoms ergibt den Atomformfaktor

$$f_j = \int_V \rho_j(\vec{r}) e^{-i\Delta \vec{k} \cdot \vec{r}} dV$$
(4)

• Kugelsymmetrische Ladungsverteilung: $\rho_j(\vec{r}) = \rho_j(r)$ ergibt

$$f_j = 4\pi \int_0^{R_{Atom}} \rho_j(r) \frac{\sin \Delta kr}{\Delta kr} r^2 dr$$
(5)

• Streuung in Vorwärtsrichtung: $\Delta k = 0$

$$f_j = 4\pi \int_0^{R_{Atom}} \rho_j(r) r^2 dr = Z_j$$
(6)

ergibt also die Gesamtladung des Atoms

Streuamplitude

 2. Schritt Streuamplitude

$$F = \sum_{r_j} f_j e^{-i\Delta\phi(r_j)}$$

für identische Bausteine mit $f_j = f$

$$F = f \sum_{r_j} e^{-i\Delta\phi(r_j)}$$

- Im Allgemeinen erfolgt also die Summation über:
 - die Ladungsverteilung des einzelnen Atoms \rightarrow Atomformfaktor
 - die Basis \rightarrow Strukturfaktor
 - über alle Gitterpunkte → Streuamplitude

< 回 > < 三 > < 三 >

Phasenproblem

- Gemessen wird die Position und die Intensität |F|² möglichst vieler Reflexe
- Bei der Intensitätmessung geht jedoch die Phaseninformation verloren !
- Bestimmung der Struktur bzw. Ladungsverteilung nicht mehr eindeutig !

< 同 > < 回 > .

Gang einer Strukturbestimmung

- Bestimmung von Position und Intensität möglichst vieler Reflexe
- ② Gewinne daraus Aussagen über die Symmetrie und mögliche Strukturen
- $\textcircled{O} \quad \text{Entwicklung eines Modells} \rightarrow \text{Hypothese}$
- Berechnung eines Beugungsbildes aufgrund des Modells
- S Vergleich mit dem entsprechenden experimentellen Beugungsbild
- Verbesserung (Verfeinerung) des Modells und zurück zu 4
 - Iteratives Verfahren \rightarrow Programme
 - Wie genau ist die Strukturbestimmung ?

< 回 > < 三 > < 三 >

Gang einer Strukturbestimmung

Iteratives Verfahren:

Coherent Diffraction Imaging (CDI): Proteinstruktur

• Wie genau ist die Strukturbestimmung ?

Electron density of RUBISCO from the PDB A section of the 3D diffraction pattern assembled from many images (2.5 Å resolution) The reconstructed electron density (with noise)

Coherent Diffraction Imaging (CDI) am FLASH

- Kann man Strukturinformation messen bevor die Probe zerplatzt?
- 1. Beispiel: "Proof of Principle" Experiment bei $\lambda = 32$ nm

Coherent Diffraction Imaging (CDI) am FLASH

• Diffract and Destroy !

June 7, 2010 23

Coherent Diffraction Imaging (CDI) am FLASH

2. Beispiel: Nanostrukturen (PRL 104, 064801 (2010)) **Rechnung: Röntgen-FEL**

Messung: FLASH (13nm)

CDI zeigt, dass Expansion der eingelagerten Probe verzögert wird _

Coherent Diffraction Imaging (CDI) am FLASH

- Kann man die Expansionsdynamik in Echtzeit "filmen"?
- 3. Beispiel: Clusterexpansion

Coherent Diffraction Imaging (CDI) am FLASH

• 4. Beispiel: Nanostrukturen (Nature Photonics 2, 415 (2008))

Coherent Diffraction Imaging (CDI) mit X-Ray FELs

Das ultimative Ziel: → Molecular Movie
 Chemische Prozesse mit atomarer Auflösung in Echtzeit "filmen"

