- Neben der Rumpfniveauspektroskopie an Clustern bietet FLASH die Möglichkeit Cluster unter extremen Bedingungen im Feld eines intensiven Röntgenpulses zu studieren → (Nano)Plasmaphysik
- Fokussierung des FEL-Lichtes erzeugt Intensitäten in der Größenordung ~ 10¹⁷ W/cm²

Aber warum ist das eigentlich so interessant?

- Plasma: der sogenannte 4. Aggregatzustand von Materie
- Im Plasma sind die Atome ionisiert; es gibt positiv geladene Ionen und quasifreie Elektronen
- 99% des sichtbaren Universums sind im Plasmazustand

 Intensive Laserstrahlung insbesondere FLASH erlaubt diesen Materiezustand im Labor zu erzeugen und im Detail zu untersuchen

• Eindringtiefe δ eines Laserfeldes ins Plasma:

$$\delta = rac{c}{\omega_p} \quad ext{mit} \quad \omega_p = \sqrt{rac{n_e e_0^2}{\epsilon_0 m_e}}$$

und numerisch $~\delta = 5.31 \times 10^5 \frac{1}{\sqrt{\textit{n}_e/\,\text{cm}^{-3}}}\,\text{cm}\,.$

 FLASH erzeugt "homogene" Plasmen bei konstantem Volumen (isochoric heating)

Laser-Cluster Wechselwirkung verläuft in drei Phasen:
 (a) Energiedeposition, (b) Ionisation und (c) Desintegration

 Energetik und Dynamik hängen von den spezifischen Eigenschaften des Laserfeldes und der Cluster ab (Clustergröße, Laserintensität, Photonenenergie,...)

Frage: Warum sind Cluster in starken Laserfeldern interessant?

Antwort: Es lassen sich hochenergetische Teilchen erzeugen!

- Wie stark sind schwache Felder oder wie schwach sind starke Felder?
- Atomare Einheit der elektrischen Feldstärke E₀:

$$E_{0,C} = \frac{e_0}{4\pi\epsilon_0 a_0^2} \approx 5.1 \times 10^9 \frac{V}{\text{cm}}$$
 (1)

(Coulombfeld im H-atom im Abstand *a*₀, Bohrscher Radius)

Elektrische Feldamplitude eines Laserpulses der Intensität I:

$$E_{0,L} = \sqrt{\frac{2I}{\epsilon_0 c}} \tag{2}$$

• Für ein Wasserstoffatom im Grundzustand ist ein Laserfeld stark wenn: $E_{0,L} \ge E_{0,C}$

Daraus folgt:
$$I \ge 3.5 \times 10^{16} \frac{\text{W}}{\text{cm}^2}$$
 (3)

- Beschreibung der atomaren Wechselwirkung im Allgemeinen in der single active electron (SAE) N\u00e4herung
- Neben dem Ionisationspotetial I_p und der Photonenenergy $\hbar\omega$ spielt das ponderomotive Potential U_p eine wesentliche Rolle bei der Charakterisierung der induzierten Prozesse.

$$U_p = \frac{e_0^2}{2m_e\epsilon_0 c \omega^2} I \propto \lambda^2 I \tag{4}$$

und numerisch $U_p=9.34\times 10^{-20}\,(\lambda/\,\text{nm})^2\,\text{I}/(\text{W}\,\text{cm}^{-2})\,\text{eV}$

 Die r\u00e4umliche Charakterisierung der St\u00e4rke des Laserfeldes erfolgt durch die Amplitude der Elektronenbewegung

$$x_0 = \frac{e_0 E_{0,L}}{m_e \omega^2} \tag{5}$$

und numerisch $x_0 = 1.36 \times 10^{-7} (\lambda / \text{nm})^2 \sqrt{I/(10^{12} \, \text{W cm}^{-2})} \, \text{nm}$

- Ist eine Lösung der Schrödingergleichung (Atom+Laserfeld) im Rahmen der Störungstheorie möglich?
- Mittels des Keldysh Parameter γ lässt sich störungstheoretische Multi-Photonen-Ionisation ($\gamma\gg 1$) von nicht-störungstheoretischer Tunnel-Ionisation ($\gamma\leq 1$) unterscheiden.

$$\gamma = \sqrt{\frac{I_p}{2U_p}} = \sqrt{\frac{I_p \, \epsilon_0 \, m_e \, c \, \omega^2}{e_0^2 \, I}} \propto \frac{t_{ZR}}{T} \qquad (6)$$
 und numerisch
$$\gamma = 2.31 \times 10^9 \sqrt{\frac{I_p / \, \text{eV}}{\left(I / \, \text{W} \, \text{cm}^{-2}\right) \left(\lambda / \, \text{nm}\right)^2}}$$

• γ ist proportional dem Verhältnis von Tunnelzeit t_{ZR} des Elektrons durch die Laser-induzierte Potetialbarriere und der Laserperiode $T=2\pi/\omega$.

• Keldysh Parameter γ , Quiver-Amplitude x_0 und ponderomotives Potential U_p für verschiedene Laserwellenlängen und Intensitäten

			Intensität	
Wellenlänge		$10^{14}{\rm Wcm^{-2}}$	$10^{16}{\rm Wcm^{-2}}$	10 ¹⁸ W cm ⁻²
$\lambda = 780\mathrm{nm}$	γ	1.55	0.15	0.015
	U_p	5.67eV	567eV	56.7keV
	<i>x</i> ₀	8.28Å	82.8Å	828Å
$\lambda = $ 100 nm	γ	12.1	1.21	0.121
	U_p	93meV	9.3eV	932eV
	<i>x</i> ₀	0.136Å	1.36Å	13.6Å
$\lambda =$ 3.5 nm	γ	345	34.5	3.45
	U_p	0.1meV	0.01eV	1.1eV
	<i>x</i> ₀	0.0002Å	0.002Å	0.02

Fundamentale Ionisationsprozesse in Atomen

Clusterphysik in starken optischen Laserfeldern

Ionisation in der Anstiegsflanke des Laserpulses durch:

Innere und äußere Feldionisation

- → ionization ignition als Effekt der kombinierten Felder (Laser + Cluster) PRA 55, 1182 (1997)
- Kohärente Elektronenbewegung
 - → Stoßionisation der Elektronen JPB 27, 4391 (1994)
 - → Dynamical ionization ignition berücksichtigt zusätzlich die zeitabhängige Elektronenverteilung PRA 68, 033201 (2003)

Clusterphysik in starken optischen Laserfeldern

• Absorption durch inelastische Stöße (*inverse Bremstrahlung*) Nanoplasma ($N > 10^4$) gedämfter Oszillator ($N < 10^3$) PRA 57, 369 (1998) PRL 91, 223401 (2003)

Clusterphysik in starken optischen Laserfeldern

Dynamik der Clusterexpansion

Elektronendruck (hydrodynamisch)
Heiße Elektronen expandieren
und ziehen die Ionen mit

$$P_H = n_e k T_e \propto Q$$

- · Cluster Explosion verläuft schrittweise
- Ionen in äußeren Schalen werden früher ionisiert und effizienter beschleunigt

- Welche Modelle der Laser-Cluster Wechselwirkung aus dem optischen Spektralbereich lassen sich übertragen ?
- Gibt es "neue Physik" bei kurzen Laserwellenlängen ?
- Antwort: FEL-Clusterexperimente 2002-2009 ! $(\lambda=100, 32 \text{ und } 13.5 \text{ nm})$

Experiment im FLASH-Tunnel 2002

Experimenteller Aufbau und Ionendetektor

- Cluster wird durch FEL Photonen in einer Coulombexplosion vollständig zerstört (Nature 420, 482 (2002))
- mittlere Ladung pro Atom: $\overline{z} = 3$
- hohe kinetische Energien der Ionen (keV)
- mittlere Absorption pro Atom: $\overline{E} = 550 \text{eV} \ (\approx 43 \text{ FEL Photonen})$

• Was ist der Absorptions- und Ionisationsmechanismus?

 "Standard" inverse Bremstrahlung erklärt nicht exp. Ergebnisse Absorption ist Faktor 10 zu klein ! (PRL 92, 143401 (2004))

• Was ist der Absorptions- und Ionisationsmechanismus?

Absorptionsmodelle der letzten Jahre:

 Ionisation: thermo-elektronische Emission (PRL 95, 063402 (2005)) verzögert, isotrop,

Ionisation: thermo-elektronische Emission (PRL 95, 063402 (2005))
 verzögert, isotrop, thermalisiert und niederenergetisch

Ionen- und Elektronenspektren von Ar₁₅₀-Clustern @10¹³ W cm⁻²

- E_{kin}(q) ist klein , q_{max} = 4 und Erzeugung großer Fragmente ⇒ geringe Absorption !
- einzelne 1-Photon Photoabsorptionsprozesse

Simulation der Photoelektronenspektren:

$$E_{k} = h\nu - I_{p} - \frac{e_{0}^{2}}{4\pi\epsilon_{0}} \sum_{i \neq i} \frac{q_{i}}{r_{ij}}$$
 (7)

kein Heizen des Plasmas durch inverse Bremstrahlung!
 PRL 100, 133401 (2008)

Anregung von innern Elektronenschalen

Elektronische Struktur von Xenon

Wirkungsquerschnitt für die Photoionisation ist stark erhöht!

Elementabhängigkeit

Querschnitte: @ 90eV

Xe > 25 Mb Kr ~ 0.5 Mb Ar ~ 0.2 Mb

25

• Anregung von dotierten (core-shell) Clustern

Ionisation des eingelagerten Clusters wird unterdrückt!