Nano(cluster)plasmen

- Neben der Rumpfniveauspektroskopie an Clustern bietet FLASH die Möglichkeit Cluster unter extremen Bedingungen im Feld eines intensiven Röntgenpulses zu studieren → (Nano)Plasmaphysik
- Fokussierung des FEL-Lichtes erzeugt Intensitäten in der Größenordung ~ 10¹⁷ W/cm²

Aber warum ist das eigentlich so interessant?

Nano(cluster)plasmen

- Plasma: der sogenannte 4. Aggregatzustand von Materie
- Im Plasma sind die Atome ionisiert; es gibt positiv geladene lonen und quasifreie Elektronen
- 99% des sichtbaren Universums sind im Plasmazustand

 Intensive Laserstrahlung insbesondere FLASH erlaubt diesen Materiezustand im Labor zu erzeugen und im Detail zu untersuchen

Nano(cluster)plasmen

• Eindringtiefe δ eines Laserfeldes ins Plasma:

Nano(cluster)plasmen

Laser-Cluster Wechselwirkung verläuft in drei Phasen:
 (a) Energiedeposition, (b) Ionisation und (c) Desintegration

 Energetik und Dynamik hängen von den spezifischen Eigenschaften des Laserfeldes und der Cluster ab (Clustergröße, Laserintensität, Photonenenergie,...)

Nano(cluster)plasmen

• Frage: Warum sind Cluster in starken Laserfeldern interessant ?

Antwort: Es lassen sich hochenergetische Teilchen erzeugen !

< ロ > < 同 > < 回 > < 回 >

Physik in starken Laserfeldern

- Wie stark sind schwache Felder oder wie schwach sind starke Felder ?
- Atomare Einheit der elektrischen Feldstärke *E*₀:

$$E_{0,C} = \frac{e_0}{4\pi\epsilon_0 a_0^2} \approx 5.1 \times 10^9 \frac{\text{V}}{\text{cm}} \tag{1}$$

(Coulombfeld im H-atom im Abstand *a*₀, Bohrscher Radius)

• Elektrische Feldamplitude eines Laserpulses der Intensität I:

$$E_{0,L} = \sqrt{\frac{2I}{\epsilon_0 c}}$$
(2)

 Für ein Wasserstoffatom im Grundzustand ist ein Laserfeld stark wenn: E_{0,L} ≥ E_{0,C}

Daraus folgt:
$$I \ge 3.5 \times 10^{16} \frac{W}{\text{cm}^2}$$
 (3)

Physik in starken Laserfeldern

- Beschreibung der atomaren Wechselwirkung im Allgemeinen in der single active electron (SAE) Näherung
- Neben dem Ionisationspotetial I_p und der Photonenenergy ħω spielt das ponderomotive Potential U_p eine wesentliche Rolle bei der Charakterisierung der induzierten Prozesse.

$$U_{\rho} = \frac{e_0^2}{2m_e\epsilon_0 \, c \, \omega^2} I \propto \lambda^2 I \tag{4}$$

und numerisch $U_p = 9.34 \times 10^{-20} \, (\lambda / \, nm)^2 \, I / (W \, cm^{-2}) \, eV$

 Die r\u00e4umliche Charakterisierung der St\u00e4rke des Laserfeldes erfolgt durch die Amplitude der Elektronenbewegung

$$x_0 = \frac{e_0 E_{0,L}}{m_e \omega^2} \tag{5}$$

und numerisch $x_0 = 1.36 \times 10^{-7} (\lambda / \text{nm})^2 \sqrt{I/(10^{12} \text{ W cm}^{-2}) \text{ nm}}$

Physik in starken Laserfeldern

- Ist eine Lösung der Schrödingergleichung (Atom+Laserfeld) im Rahmen der Störungstheorie möglich ?
- Mittels des Keldysh Parameter γ lässt sich störungstheoretische Multi-Photonen-Ionisation (γ ≫ 1) von nicht-störungstheoretischer Tunnel-Ionisation (γ ≤ 1) unterscheiden.

$$\gamma = \sqrt{\frac{l_{\rho}}{2U_{\rho}}} = \sqrt{\frac{l_{\rho} \epsilon_0 m_e c \omega^2}{e_0^2 l}} \propto \frac{t_{ZR}}{T} \qquad (6)$$

und numerisch $\gamma = 2.31 \times 10^9 \sqrt{\frac{l_{\rho} / \text{eV}}{(l / \text{W} \text{ cm}^{-2}) (\lambda / \text{nm})^2}}$

• γ ist proportional dem Verhältnis von Tunnelzeit t_{ZR} des Elektrons durch die Laser-induzierte Potetialbarriere und der Laserperiode $T = 2\pi/\omega$.

< 回 > < 三 > < 三 >

Physik in starken Laserfeldern

 Keldysh Parameter γ, Quiver-Amplitude x₀ und ponderomotives Potential U_p für verschiedene Laserwellenlängen und Intensitäten

			Intensität	
Wellenlänge		10 ¹⁴ W cm ⁻²	10 ¹⁶ W cm ⁻²	10 ¹⁸ W cm ⁻²
$\lambda = 780\mathrm{nm}$	γ	1.55	0.15	0.015
	U_p	5.67eV	567eV	56.7keV
	<i>x</i> ₀	8.28Å	82.8Å	828Å
$\lambda = 100\mathrm{nm}$	γ	12.1	1.21	0.121
	U_p	93meV	9.3eV	932eV
	<i>x</i> ₀	0.136Å	1.36Å	13.6Å
$\lambda = 3.5\mathrm{nm}$	γ	345	34.5	3.45
	Up	0.1meV	0.01eV	1.1eV
	<i>x</i> ₀	0.0002Å	0.002Å	0.02

Physik in starken Laserfeldern

• Fundamentale Ionisationsprozesse in Atomen

June 2, 2010 10

Clusterphysik in starken optischen Laserfeldern

• Ionisation in der Anstiegsflanke des Laserpulses durch:

 Innere und äußere Feldionisation

 → ionization ignition als Effekt der kombinierten Felder (Laser + Cluster)
 PRA 55, 1182 (1997)

• Kohärente Elektronenbewegung

 \rightarrow Stoßionisation der Elektronen JPB 27, 4391 (1994)

→ *Dynamical ionization ignition* berücksichtigt zusätzlich die zeitabhängige Elektronenverteilung PRA 68, 033201 (2003)

Clusterphysik in starken optischen Laserfeldern

• Absorption durch inelastische Stöße (*inverse Bremstrahlung*) Nanoplasma ($N > 10^4$) gedämfter Oszillator ($N < 10^3$) PRA 57, 369 (1998) PRL 91, 223401 (2003)

Clusterphysik in starken optischen Laserfeldern

Dynamik der Clusterexpansion

Elektronendruck (hydrodynamisch) Heiße Elektronen expandieren und ziehen die Ionen mit

$$P_{H} = n_{e}kT_{e} \propto Q$$

Cluster Explosion verläuft schrittweise

 Ionen in äußeren Schalen werden früher ionisiert und effizienter beschleunigt

Coulombdruck Abstoßung hochgeladener Elektronen $P_{c} = Q^{2}e_{0}^{2}/(8\pi r^{4}) \propto Q^{2}$ 7000 600 \$ 5000 Kinetic energy 4000 3000 2000 (b) 1000 0 0 50 100 150 200 250 Time (fs) PRL 72, 1810 (1994)

Clusterphysik mit intensiven XUV FEL-Pulsen

- Welche Modelle der Laser-Cluster Wechselwirkung aus dem optischen Spektralbereich lassen sich übertragen ?
- Gibt es "neue Physik" bei kurzen Laserwellenlängen ?
- Antwort: FEL-Clusterexperimente 2002-2009 !

 $(\lambda = 100, 32 \text{ und } 13.5 \text{ nm})$

Clusterphysik mit intensiven XUV FEL-Pulsen (100nm)

• Experiment im FLASH-Tunnel 2002

June 2, 2010 15

Clusterphysik mit intensiven XUV FEL-Pulsen (100nm)

Experimenteller Aufbau und Ionendetektor

Clusterphysik mit intensiven XUV FEL-Pulsen (100nm)

Clusterphysik mit intensiven XUV FEL-Pulsen (100nm)

- Cluster wird durch FEL Photonen in einer Coulombexplosion vollständig zerstört (Nature 420, 482 (2002))
- mittlere Ladung pro Atom: $\overline{z} = 3$
- hohe kinetische Energien der Ionen (keV)
- mittlere Absorption pro Atom: $\overline{E} = 550$ eV (\approx 43 FEL Photonen)

• Was ist der Absorptions- und Ionisationsmechanismus ?

Clusterphysik mit intensiven XUV FEL-Pulsen (100nm)

• "Standard" *inverse Bremstrahlung* erklärt <u>nicht</u> exp. Ergebnisse Absorption ist Faktor 10 zu klein ! (PRL 92, 143401 (2004))

Was ist der Absorptions- und Ionisationsmechanismus '

Clusterphysik mit intensiven XUV FEL-Pulsen (100nm)

• Absorptionsmodelle der letzten Jahre:

Clusterphysik mit intensiven XUV FEL-Pulsen (100nm)

 Ionisation: thermo-elektronische Emission (PRL 95, 063402 (2005)) verzögert, isotrop,

Clusterphysik mit intensiven XUV FEL-Pulsen (100nm)

 Ionisation: thermo-elektronische Emission (PRL 95, 063402 (2005)) verzögert, isotrop, thermalisiert und niederenergetisch

Clusterphysik mit intensiven XUV FEL-Pulsen (32nm)

Ionen- und Elektronenspektren von Ar₁₅₀-Clustern @10¹³ W cm⁻²

- E_{kin}(q) ist klein , q_{max} = 4 und Erzeugung großer Fragmente ⇒ geringe Absorption !
- einzelne 1-Photon Photoabsorptionsprozesse

Clusterphysik mit intensiven XUV FEL-Pulsen (32nm)

• Simulation der Photoelektronenspektren:

1

$$\Xi_{k} = h\nu - I_{p} - \frac{e_{0}^{2}}{4\pi\epsilon_{0}} \sum_{i\neq j} \frac{q_{i}}{r_{ij}}$$
(7)

 kein Heizen des Plasmas durch inverse Bremstrahlung ! PRL 100, 133401 (2008)

Clusterphysik mit intensiven XUV FEL-Pulsen (13nm)

• Anregung von innern Elektronenschalen

Elementabhängigkeit

Clusterphysik mit intensiven XUV FEL-Pulsen (13nm)

• Anregung von dotierten (core-shell) Clustern

Ionisation des eingelagerten Clusters wird unterdrückt !