Halbleitercluster

590

Ξ.

< □ > < □ > < □ > < □ > < □ > < □ > .

Cluster aus Halbleitern

- Insbesondere von Clustern aus im Festkörper halbleitenden Materialien wie Si oder Ge hatte man sich sehr viel für mögliche Anwendungen versprochen
- Diese Wünsche haben sich jedoch nicht erfüllt, da sich die Eigenschaften von z.B. kleinen Si-Clustern sich grundlegend von denen des Festkörpers unterscheiden
- Im folgenden werden exemplarisch die Eigenschaften von Si-Clustern diskutiert

 $\mathcal{A} \mathcal{A} \mathcal{A}$

<ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Si Massenspektrum

- Ähnlich dem vom Kohlenstoff, jedoch werden immer gerad- und ungeradzahlige Cluster beobachtet
- Keine Si-Fullerene

 $\mathcal{A} \mathcal{A} \mathcal{A}$

Э

Si Strukturberechnung

- Berechnung der geometrischen Struktur am Beispiel von Si₁₄-Clustern
- Simulation mittels Molekulardynamik, um die Grundzustandsstruktur zufinden
- Gezieltes Heizen und Abkühlen der Cluster

S Q (

3

-∢ ∃ ▶

31

< □ ▶

Struktur kleiner Si Cluster

- Geometrische Struktur von kleinen Si_n-Clustern
- Typische Elektronenpopulation: $3s^{1.75}3p^{2.25} 3s^{1.95}3p^{2.05}$
- Fast keine *sp* Hybridisierung
- Vollkommen anderes Bindungsverhalten als im Festkörper

 $\mathcal{A} \mathcal{A} \mathcal{A}$

3

<ロト < 回 ト < 国 ト < 国 ト -

Si: Elektronische Struktur

- Erwartung: Bandabstand nimmt mit zunehmender Clustergröße ab
- Elektronische Struktur \Rightarrow Photoemission

590

Halbleiter Cluster

Si Photoemission

Raghavachari et al., J.Chem.Phys. 94, 3670(1991); Xu et al., J.Chem.Phys. 108, 1395(1998) < 🗇 🕨 < 🖹 🕨 🛓 🗸 🖉 🔗

Si Photoemission

HOMO-LUMO
 Abstand

Abstand = "Band gap" bleibt fast konstant im Bereich bis Si₂₀

Muller et al., PRL 85, 1666 (2000)

▲□▶ ▲□▶ ▲ 国▶ ▲ 国▶

590

王

Si Photoemission – Geometrie

- Photoelektronenspektroskopie kann klar die verschiedenen isomeren Strukturen f
 ür Si₁₁ unterscheiden
- Vergleich mit der Theorie erlaubt es die Geometrie zu bestimmen
- TTP Subunit ist die Struktur mittelgroßer Si-Cluster

SQA

Si Photoemission – Geometrie

• Kleine Si_n Cluster liegen als "tricapped trigonal prism" vor

A. A. Shvartsburg et al., J. Chem. Phys. 112, 4517 (2000)

SQ (A

<ロト < 回 ト < 三 ト < 三 ト - 三

Si HOMO-LUMO Abstand

- Ab Si₂₆ wird das HOMO–LUMO Gap jedoch sehr klein
- Der Halbleiter Silizium wird metallisch
- Ursache ?

 $\mathcal{A} \mathcal{A} \mathcal{A}$

3

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Metallisches Silizium

• Oberflächenzustände

- Wie auch im Siliziumfestkörper bilden sich an der Oberfläche zweidimensionale Zustände aus, die metallischen Charakter haben
- Im Cluster ist der Oberflächenanteil so groß, daß sie die Eigenschaften dominieren und der Cluster damit insgesamt metallisch wird
- Passivieren der Oberflächenzustände
 - Die Oberfläche kann z.B. durch Anlagerung von H-Atomen passiviert werden

500

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□

Metall-Isolator Übergang

 Allgemein stellt sich die Frage, ob ein Cluster als ein Metall oder ein Isolator betrachtet werden kann

• Metall:

Zustandsdichte an der Fermi-Kante und keine Bandlücke

Isolator:

Große Bandlücke \equiv Großer HOMO–LUMO Abstand

 In einem metallischen Cluster sollte zudem die Elektronenaffinität durch Gleichung 118 gegeben sein.

$$\mathsf{EA}(R) = W - rac{1}{2} \cdot rac{e^2}{R^2}$$

(Elektronenaffinität einer metallischen Kugel)

Als Beispiel sollen hier zunächst Quecksilber-Cluster betrachtet werden.

500

(日)

Metall-Isolator Übergang

- Warum Quecksilber ?
- Elektronische Struktur von Quecksilber Atomen: $5d^{10}6s^2 \rightarrow Abgeschlossene Schalen \rightarrow Edelgas ähnlich \rightarrow Isolator$
- Quecksilber im Festkörper, Hybridisierung von s und p Zuständen \rightarrow Metall
- Cluster \rightarrow ?

Molekül- und Clusterphysik

Metall-Isolator Übergang

Photoelektronenspektroskopie an Hg⁻_n Clusteranionen
 B. von Issendorff, O. Cheshnovsky, Annu.Rev.Chem. 56, 549 (2005)

Rumpfniveauspektroskopie an Clustern

- Ein wichtiger Aspekt im Bereich der Clusterphysik (insbesondere aus Hamburger Sicht) ist die Inbetriebnahme des freie Elektronen Lasers (FEL) FLASH bei DESY im Jahr 2006
- Damit ist erstmals Rumpfniveauphotoelektronenspektroskopie an massenselektierten Clustern möglich geworden
- Aber warum ist das eigentlich so interessant ?

 $\mathcal{A} \mathcal{A} \mathcal{A}$

Rumpfniveauspektroskopie von Clustern

Photoelektronenspektren von (großen) Edelgasclustern

590

臣

(口)

Rumpfniveauspektroskopie von Clustern

Verhalten der Rumpfniveaus in Clustern

590

臣

<ロ> < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Rumpfniveauspektroskopie von Clustern

- Mit Hilfe der Rumpfniveauspektroskopie können die unterschiedlichen "Sites" eines Clusters unterschieden werden Oberfläche – Bulk – Interface …
- Strahlung im weichen Röntgenbereich mit einer Photonenenergie von mindestens einigen 10 eV erforderlich
- Bis jetzt nur bei **nicht** massenselektierten Clustern möglich
- Warum ?

 $\mathcal{A} \mathcal{A} \mathcal{A}$

Cluster Rumpf-PES Zählrate

 Zählrate, die man an massenselektierten Clustern in einem Photoemissionssexperiment erwarten kann

Cluster		Photonen	
Strom I _{CI}	0.1 nA	Photonen / s N _p	10 ¹²
kin. Energie <i>E_{kin}</i>	100 eV		
Cross section/Atom σ_A	5.0 Mbarn	Wechselwirkungzone	
Atommasse <i>M_A</i> (Ge)	73 amu	Fläche A	1 mm ²
Clustergröße N	10	Länge /	1 mm
		Druck pg	10 ⁻¹⁰ mbar
		Restgas σ_g	5.0 Mbarn

 $\mathcal{A} \mathcal{A} \mathcal{A}$

<ロト < 団ト < 団ト < 団ト = 三日

Zählrate

Cluster Rumpf-PES Zählrate

Restgasdichte
$$n_g = \frac{N_A}{22.4 \cdot 10^6} \cdot \frac{p[mbar]}{1000}$$
2689 mm^{-3} Cluster Geschwindigkeit $v_{Cl} = \sqrt{\frac{2 \cdot E_{kin} \cdot e}{N \cdot M_A \cdot m_p}}$ 5123 m/s

Clusterdichte
$$n_{Cl} = \frac{r_{Cl}}{A \cdot e \cdot v_{Cl}}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Erzeugte Clusterionen

$$N_{CI} = n_{CI} \cdot \sigma_{CI} \cdot N_{p} \cdot I \cdot N$$

1

Erzeugte Restgasionen

$$\mathsf{N}_g = \mathit{n}_g \cdot \sigma_g \cdot \mathit{N}_p \cdot \mathit{I}$$

Clusterzählrate

$$N_{CI} \cdot P$$

Restgaszählrate

$$N_q \cdot P$$

Molekül- und Clusterphysik

SQ (A

E

Cluster Rumpf-PES Zählrate

	Synchrotron	FEL
N _P	$10^{12}s^{-1}$	10 ¹³ / Puls
Р	-	bis zu 1000 <i>s</i> ⁻¹
N _{C/} 1/s	0.6	6000
N _g 1/s	1-100	13000

- Ein normales Synchrotron ist eine quasi CW Quelle
 - Es werden immer Elektronen gemessen, was die Restgaszählrate entsprecht erhöht
 - nur ein Teil der Photonen genutzt werden kann
- Freie Elektronen Laser (FEL)
 - Die Zahl der Photonen ist um Größenordnungen höher als bei einem Synchrotron
 - Der FEL ist gepulst, so daß nur in einem kurzen Zeitpunkt Elektronen nachgewiesen werden müssen. Dadurch kann der Anteil des Restgases, der immer da ist unterdrückt werden 3

FLASH – Cluster

Clusterexperiment für Rumpfniveauspektroskopie mit FLASH

- Laserverdampfungsquelle
- Massenselektion (Dipolmagnet oder TOF)
- UHV-Analysekammer mit $p < 1 \cdot 10^{-10}$ mbar
- 7 Gruppen (Uni Rostock, Uni Hamburg, TU Berlin, FU Berlin, BESSY, Uni Konstanz, Uni Frankfurt)

- Erste Experimente
 - Photoelektronenspektroskopie an Blei-Clustern
 - Photoelektronenspektroskopie an massenselektierten Tantal und Wolfram Clustern
 - Die 4f Niveaus zeigen typisch einen relativ großen Surface-Core-Level Shift
 - Die Materialien lassen sich gut clustern
 - Die 4f Bindungsenergien liegen mit ca. 30 eV mit richtigen Bereich f
 ür FLASH
 - und danach (fast) das ganze Periodensystem

 $\mathcal{A} \mathcal{A} \mathcal{A}$

Photoemission bei FLASH

FLASH-Cluster im Labor

Rumpfniveauspektroskopie Photoemission bei FLASH

FEL – Freie Elektronen Laser

- Durch die Wechselwirkung von emitierter Synchrotronstrahlung eines hochrelativistischen Elektronenstrahls mit sich selbst wird eine kohärenter Bewegung (fast) aller Elektronen in einem Elektronenbunch (typische Ladung 1 nC $\approx 10^{10}$ Elektronen) erzeugt – SASE Prinzip
- Die kohärente Bewegung der Elektronen erzeugt einen sehr intensiven, kurzen Strahlungspuls im Bereich von einigen 10-100 fs
- Strahlung ist um Größenordnungen brillianter als die eines Synchrotrons

FLASH – Die Experimentierhalle

FLASH Cluster – Experimenteller Aufbau

FLASH Cluster – Aufbau in der FEL Halle

Synchronisation FLASH – Cluster

Time-of-flight mass spectrum

- FLASH: Ungewöhnliche Bunchstruktur
- "Gleichzeitige" Messung unterschiedlicher Massen

 $\mathcal{A} \mathcal{A} \mathcal{A}$

王

<ロ > < 同 > < 同 > < 三 > < 三 >

FLASH Cluster – Die ersten Ergebnisse

<ロト < 回 ト < 亘 ト < 亘 ト :

 $\mathcal{A} \mathcal{A} \mathcal{A}$

FLASH Cluster – Der nächste Versuch

• Es geht auch besser

Molekül- und Clusterphysik

FLASH Cluster – Ergebnisse

- Metall Nicht-Metall Übergang im Bereich von N=19 ?
- Nicht sichtbar in der Elektronenaffinität

SQA

毫

<ロト < 団ト < 団ト < 団ト

Photoemission bei FLASH

Metall – Isolator Übergang ?

- DFT Rechnungen von Wang et al. Phys.Rev.A 71, 033201 (2005)
- Struktureller Übergang von einer prolaten, geschichteten Struktur in eine kompakte (fcc) Struktur f
 ür N=14-22

- ₹ ₹ ▶