Metallcluster

Übergangsmetallcluster

Übergangsmetallcluster

1:01H Hydrogen ^{14.01} _{1s} 1 ^{20.28}																	${}^{4:00}_{2} He \\ {}^{\text{Helium}}_{{}^{0.55} {}_{2s} 2^{4:316}}$
6:94 3 Lithium 551.69 1118-15 (Reg 2.1	$\substack{9:01 \\ 4} Beryllium \\ \frac{1551}{3243} \\ \frac{3243}{22}$											10:81B 5 Boron 2573 23931 (Ma) 22 2p ¹	12:01 6 Carbon ³⁸²⁰ ⁵¹⁰⁰ (He) 2x ² 2p ²	$14:01 \mathbf{N}$ Nitrogen (1.29) 77.4 (Be) $2s^{2} 2p^{3}$	16:00 8 Oxygen ^{54:8} 20:10 (BB) 2x 2 2p	19:00F 9 Fluorine 52:52 255 (He) 2:8 ² 2:55	$^{20:18}_{10} Neon_{^{48}2^{27:1}_{28}^{27:2}_{29}^{6}}$
22:99 Na 11 Sodium ^{270.56} 1155.1 (BB) 32	24:31 Mg 12 Magnesium ^{922 1363} _{(Be) 32} 2											26:98 13 Aluminum 23.5 2740 (Be) 32 23p1	28:09 14 Silicon ¹⁶⁸³ 2 ⁶²⁸ _{(Ne) 32} 2 ³ 2 ²	${}^{30:97}_{15}P$ Phosphorus ${}^{17:a}_{(Be)},{}^{553}_{2p^3}$	32:07 16 Sulfur ³⁸⁶ 217.824 (Be) 38 ² 32 ⁴	35:45 17 Chlorine ^{172:2} (Be) 3x ² 3p ⁵	39:95 18 Argon ^{81.8} 2 ^{87.3} (Be) 3x ² 3p ⁶
39:10 19 Potassium ^{326.8} 1047 (Ar) 42	40:08 20 Calcium 1112 1757 (Ar) 42	${}^{44:96}_{21} {\rm Sc}_{{\rm Scandium}}_{{}^{1814}_{{}^{1813}}{}^{3104}_{{}^{182}}}$	47:88 22 Titanium ¹⁹³³ _{(Ar) 3d} ² 4s ²	${}^{50.94}_{23} V_{\text{anadium}}_{{}^{2160}_{(\text{Ar})33}{}^{3650}_{4\pi^2}}$	$\sum_{\substack{24 \\ Chromium \\ 230 \\ (Ar) 3d}}^{52:00} Cr$	$54:94 Mn \\ 25 \\ Manganese \\ 1517 \\ 2235 \\ (Ar) 3d^{5} 4e^{2}$	$55:85 \mathbf{Fe}$ Iron $1008 3023$ $(Ar) 3d^{6} 4r^{2}$	${}^{58:93}_{27}_{{}^{\text{Cobalt}}_{1766}}_{{}^{1766}_{(Ar] 3d}7}$	58:69 28 Nick el ¹⁷²⁶ _{(Ar) 3d} ⁸ 42	63:55Cu 29 Copper ^{1356.6} 2840 _(Ar) 3d ¹⁰ 4s ¹	65:39Zn 30 Zinc (40:33 1180 (Ar) 3d ¹⁰ 4z ²	${}^{69:72}_{31}_{{}^{Gallium}_{_{^{20:31}3d^{10}}_{4s}2^{2676}_{4p^{1}}}}$	72:61 Ge Germanium (Ac) 32(Ac) 32(Ac) 3103 (Ac) 3103 (74:92AS 33 Arsenic 1090 876 (Ar) 3d ¹⁰ 4* ² 4p ³	$78.96_{34} Se \\ {}_{\substack{\text{Selenium} \\ 490 \\ (Ar) 3d^{10} 4r^{2} 4p^{4}}}$	79:90 Br Bromine 245.9 - 210.9 - 2	83:80 36 Krypton 116:4 (Ar) 3d ¹⁰ 42 ² 4p ⁶
85:47 Rb 37 Rubidium ^{312.3} 9 ⁶¹ (Rr) 55 ¹	87:62 38 Strontium 1042 1657 [Er] 1657	88:91Y 39 Yttrium ¹⁷⁹⁵ 3611 (Er)4d ¹ 52	$91:22_{40} Zr$ ^{21rconium} ²¹²⁵ _{(Kr) 4d² se²}	$^{92:91}_{\substack{41\\Niobium\\\frac{2741}{(\pi_{1})4d^{4}5015}}}$	$\substack{95.94 \text{MO} \\ 42 \\ \text{Molybdenum} \\ \frac{2890}{(127) 40^5} \frac{4885}{52^{-1}} }$	${}^{97:91}_{43}{\rm Tc}_{{\rm Technetium}\atop_{^{2445}}{}^{5150}_{[Kr] 4d^{6} 5r^{1}}}$	${}^{101:07}_{44}_{Ruthenium}_{{}^{2583}_{[r;140]}},{}^{4173}_{{}^{5}s^{1}}$	$^{102.91}_{45}_{\substack{\text{Rhodium}\\ 2239\\ (x_{1}) 4d^{9}}}^{\text{Rhodium}}_{5s^{2}}}$	$\overset{106:42}{\underset{\substack{46\\ \text{Palladium}\\ \frac{1825}{ Rr 4d^{10}}}}$	107:87Ag 47 ^{Silver} ^{125:1} _{(Kr) 4d} 10 ²⁴⁸⁵ ₅₅ 1	112:41 48 Cadmium 58:1 1038 (Rc) 4d ¹⁰ 54 ²		118:71Sn 50 Tin 50 Iin 505.1 2543 505.2 2543 505.2 2592	121:76Sb 51 Antimony (Re) 4d ¹⁰ ss ² 5p ³	$_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{$	$126.90 \\ 53 \\ Iodine \\ \frac{106.7}{(Kr) 4d^{10} s_{s}^{2} 5p^{5}}$	131:29Xe 54 Xenon ^{161.3} (187) 4d ¹⁰ sa ² 5p ⁶
132:91CS 55 Cesium ^{201.6} (xe) (xe) (xe) (xe)	137:33 56 Barium ¹⁰⁰² 1910 (xe) 62	$^{174:97}_{71}_{\text{Lutetium}}_{^{1936}3668}_{_{(26)4t}^{14}5d^{1}es^{2}}$	178:49 72 Hafnium ²⁵⁰³ 5470 _{(Ze) 42} 14 542 62	180:95 Ta 73 Tantalum ³²⁶⁹ 5598 _{[26] 46} 14 5d ³ cs ²	183.84 W 74 Tungsten 3660 5930 (26) 414 5d ⁴ 6s ²	$^{186:21}_{75} Re \\ {}^{Rhenium}_{{}^{3453}} {}^{5900}_{5d^{5}} {}^{cs^{2}}$	190:23 05 76 Osmium ³³²⁷ 5300 _{(xe) 46} ¹⁴ 5d ⁶ cs ²	192:22 77 Ir ^{Iridium} ²⁶⁸³ 4403 ⁽²⁶⁾ 44 ³ 54 ⁷ 65 ²	195:08Pt 78 Platinum 2045 4100 (xe) 42 ¹⁴ 5d ⁹ 6s ¹	196:97Au 79 Gold ^{1377:56} (28) 47 ¹⁴ 50 ¹⁰ 61	200:59Hg 80 Mercury 234-38 628-72 (28) 414 53 ¹⁰ 68 ²	204:38 81 Thallium 576:6 1730 47 ^(X0) 47 ^(X0) 62 ^(X0)	207:20 82 Lead 	208:98 83 Bismuth ^{544.5} 1883 ₄ 2 ¹⁴ 5d ¹⁰ cs ² 6p ³	208:98 Po 84 Polonium 527 1235 (re) 4r ¹⁴ 5d ¹⁰ cs ² cp ⁴	209:99 85 Astatine 575 610 4r ¹⁴ 5d ¹⁰ cs ² 6p ⁵	222:02Rn 86 Radon 202 211.4 (28) 414 5d ⁽²⁶⁾ 6p ⁶
$223:02 \mathbf{Fr}$ 87 Francium $300 \ 950$ (ER) 7s ¹	$226:03_{88}_{Radium}_{raj_{raj}^{973}1413}$	$^{262:11}_{{\color{black}{Lassen}}{Lassen}{Lr}}_{{\color{black}{Lassen}}{Lassen}{Lassen}{Lassen}{Lassen}_{{\color{black}{a}}{r_{a}}{r_{a}}{r_{a}}{r_{a}}{r_{p}}{r_{p}}}$		$\sum_{\substack{n/a \\ (zn) \ zz}^{n/a} \ zz}^{[262]} Db \\ Dubnium \\ \frac{n/a}{zn^{3} \ zz}^{n/a} \ e^{3/2}}$	$\underset{\substack{n/a \\ p_{2} \\ p_{3} \\ p_{3} \\ p_{3} \\ p_{3} \\ p_{4} \\ p_{4} \\ p_{4} \\ p_{4} \\ p_{4} \\ p_{2} \\ p_{4} \\ p_$	${}^{[264]}_{\substack{\text{bohrium}\\n/a & n/a\\[pan] & st}^{14} & \frac{n}{6d} 5} ,_{y_{a}}^{2}}$	[269] 108 HS Hassium ^{n/a n/a} _{[2n] sz} ¹⁴ _{6d} 6 _{7s} ²	[268] Mt 109 Mt Meitnerium ^{n/a} n/a (m) st ¹⁴ ed ⁷ ys ²	^[269] 110 Uun ^{n/a n/a} _{[m] st} ¹⁴ _{6d} 9 , 1	$\underset{[2\pi]}{\overset{[2\pi2]}{\underset{n/a}{\underset{n/a}{n/a}}}} \underbrace{\text{Unuunium}}_{\substack{n/a\\ (rai)}{\text{ ss}}^{14} \text{ 6d}^{10} \text{ 7s}^{1}}}$	^[277] Uub 112 Uub ^{n/a n/a} _{[sa] st} ¹⁴ 6d ¹⁰ 7s ²						

$ \begin{array}{c} 227.03 \text{Ac} \\ 89 \\ \text{Actinium} \\ 120 \\ 101 \text{ def}^{3.20} \\ 101$	138:91La 57 La Lanthanum $1194 \ _{(Ze)}^{3770} \ _{ed}^{3720}$	${}^{140:12}_{58} Cerium}_{{}^{1072}_{[28] 47} 5d^{1}cs^{2}}$		${}^{144:24}_{60}\!$	${}^{144,91}_{61} Pm \\ {}^{Promethium}_{{}^{1441}_{(2k)},4r5} {}^{3000}_{cs^2}}$	150:36 Sm 62 Samarium ¹³⁵⁰ 2064 (Xe) 446 ca ²	151:97Eu Europium ¹⁰⁹⁵ _{(28) 46} 7 ¹⁸⁷⁰ _{cs} 2	157:25Gd 64 Gadolinium ¹⁵⁸⁶ 3539 _{[Xe] 47} 5d ¹ cs ²	158:93 Tb 65 Terbium ¹⁶²⁹ _{(Xe) 41} 9 ³²⁹⁶ _{(xe) 41} 9	162:50 66 Dysprosium ¹⁶⁵ 2 ²⁸³⁵ (Xe) 4f ¹⁰ ce ²	164:93H0 67 Holmium ¹⁷⁴⁷ ²⁹⁶⁸ _{[Xe] 44} 11 ²⁹⁶⁸	167:26 68 Erbium ¹⁸⁰² 3136 (28) 44 ¹² 62	168:93 Tm 69 Thulium ¹⁸¹⁸ _(Ze) 4:13 ²²²⁰ _(Ze) 4:13 ² cs ²	$^{173:04}_{70} {\rm Ybterbium}_{^{1097}}{}^{1466}_{_{[Xe]4e}14^{14}e^{2}}$
	227:03AC 89 Actinium ¹³²⁰ _(Re) 6d ¹ 7s ²	232:04Th 90 Thorium 2028 2 5050 (Bal 62 72	231:04 Pa Protactinium 2113 4300 $(sm) ss^{2} 6d^{1} ns^{2}$	$238:03 U92 Uranium\frac{140:.5}{(m):st^3:6d^{-1}rs^{-2}}$	${}^{237:05}_{93} Np_{{}^{\text{Neptunium}}_{{}^{913}_{{}^{126}_{63}}},{}^{4275}_{{}^{275}_{22}}}$	244:06 Pu 94 Plutonium ⁹¹⁴ (3505 (Rn) 126 (72)	243:06 Americium $\frac{1267}{(Bn)} \frac{7280}{7\pi^2}$	${}^{247:07}_{96} {}^{Curium}_{{}^{1340} {}^{n/a}}_{{}^{(Bn)} {}^{sr}{}^{7} {}^{6d^{1}} {}^{\gamma s^{2}}}$	$\underset{\substack{n/a \\ (Rn) \ sr}^{247:07}Bk}{\text{Berkelium}}$	251:08 98 Californium ^{900 n/a} (Rn) 55 ¹⁰ 72	252:08 99 Einsteinium ^{n/a} 1130 (Rn) 52 ¹¹ 72	257:10 Fm 100 Fermium 1800 n/a (En) 55 ¹² 72 ²	${}^{258:10}_{101} {\rm Mendelevium}_{{}^{1100}_{(Bn)}} {}^{n/a}_{{}^{2}}$	$^{259:10}_{\substack{\text{Nob elium}\\ 100 & n/a\\ (BR) & 52} 14}_{\gamma_{x}2}$

Molekül- und Clusterphysik

590

Azsy Symbol e-config

Übergangsmetallcluster

- Übergangsmetalle und deren Verbindungen gehören zu den wichtigsten Materialien in technologischen Anwendungen
- Sie besitzen i.A. eine sehr komplexe elektronische Struktur aufgrund offener Schalen
 - Übergangsmetalle: Auffüllen der 3d, 4d, 4f Schale
 - Lanthanide, Actinide: Auffüllen der 4f bzw. 5f Schale
- Einfaches Jellium Modell liefert typisch keine guten Ergebnisse mehr, da das Modell eines freien Elektronengases kein geeignetes Modell mehr ist.
 - Über den Cluster delokalisierte s Elektronen
 - *d* Elektronen sind eher lokalisiert
- Besondere Eigenschaften
 - 3d-Metalle: Eisen, Kobalt, Nickel sind Ferromagneten

 - Metalle wie z.B. Niob zeigen Supraleitung

SQ Q

Atomarer Magnetismus

- Hund'sche Regel: Grundzustand hat einen maximalen Spin
- Spin und Bahnmagnetismus

<ロト < 回 ト < 回 ト < 回 ト :

500

3d Atome

Fe
$$4s^23d^6$$
 $4s^2$ $\uparrow\downarrow$ $3d^6$ $\uparrow\uparrow\uparrow\downarrow\downarrow\downarrow\downarrow$ M=0 $4s^2$ $\uparrow\downarrow$ $3d^6$ $\uparrow\uparrow\uparrow\uparrow\uparrow\downarrow\downarrow$ M=4 μ_B L=2 μ_B Mn $4s^23d^5$ $4s^2$ $\uparrow\downarrow$ $3d^5$ $\uparrow\uparrow\uparrow\downarrow\downarrow\downarrow\downarrow$ M=5 μ_B L=0 μ_B

Gesamtmomente aller 3d Metallatome in μ_B

Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Cu
$3d^{1}4s^{2}$	$3d^24s^2$	$3d^34s^2$	3d ⁵ 4s ¹	3 <i>d</i> ⁵ 4 <i>s</i> ²	$3d^{6}4s^{2}$	$3d^{7}4s^{2}$	3d ⁹ 4s ²	3 <i>d</i> ¹⁰ 4 <i>s</i> ¹
1	2	3	6	5	4	3	2	1

590

Magnetismus im Festkörper

- Magnetismus im Festkörper wird durch eine Ausrichtung der einzelnen atomaren magnetischen Momente verursacht
- Weiß'sche Bezirke in Ferromagneten enthalten typisch 10⁵ 10⁶ Atome
- Für kleine Cluster ist also ein Eindomänenverhalten zu erwarten
- Beschreibung des Magnetismus in einem Heisenbergmodell

$$\mathcal{H}_H = \sum A \, \vec{s}_i \cdot \vec{s}_j \tag{135}$$

- Spin-Spin Kopplung
- Vernachlässigung der nächste-Nachbar Wechselwirkung
- Gesamtmagnetismus $M = n \cdot \mu$

 $\mathcal{A} \mathcal{A} \mathcal{A}$

Magnetismus im Festkörper – Zustandsdichte

- Modell des itineranten Magnetismus f
 ür die 3d Ferromagneten Fe, Co und Ni
- Magnetismus wird durch die delokaliserten 3d Elektronen verursacht → Stoner Kriterium

$$n_0(E_F) \cdot I > 1 \tag{136}$$

• Ferromagnetismus, wenn das Produkt aus der Zustandsdichte an der Fermi-Kante $n_0(E_F)$ und dem Austauschintegral / größer als 1 ist.

Magnetismus

Magnetismus im Festkörper – Ferromagnetismus

SQA

臣

Metallcluster

Magnetismus

Magnetismus im Festkörper – Koordination

- Oberfläche vs. Bulk
- Koordination der Atome hat einen sehr groß en Einfluß auf die elektronische Struktur an der Fermi Kante
- Insbesondere ändert sich die Bandbreite der d-Bänder

Metallcluster Magnetismus

Magnetismus kleiner Cluster – Theorie

• Was wird für kleine Eisencluster erwartet ?

Molekül- und Clusterphysik

Magnetismus

Magnetismus kleiner Cluster – Experiment

- Wie kann man die magnetischen Eigenschaften von kleinen Clustern messen?
- Stern-Gerlach Aufbau

 $\mathcal{A} \mathcal{A} \mathcal{A}$

Magnetismus kleiner Cluster – Experiment

Magnetismus

Magnetismus kleiner Cluster – Experiment

• Kraft im inhomogenen Magnetfeld auf den Cluster ist

$$F_{z} = \mu_{z} \frac{\partial B}{\partial z} = m_{s} \mu_{B} \frac{\partial B}{\partial z}$$
(137)

• Ablenkung *d* der Cluster im Magnetfeld

$$d = K \frac{\mu_z}{mv^2} \cdot \frac{\partial B}{\partial z}$$
(138)

<ロ > < 同 > < 三 > < 三 > < □ > <

K: Geometriekonstante

SQ Q

Magnetismus

Magnetismus kleiner Cluster – Experiment

- Cluster werden im Magnetfeld abhängig von ihrer Magnetisierung M abgelenkt
- Ionisation der Cluster mittels eines Laser im Abstand d
- Massenselektion der Cluster mit einem Flugzeitmassenspektrometer
- Superparamagnetisches Verhalten der Cluster

 $\mathcal{A} \mathcal{A} \mathcal{A}$

Э

< ∃ >

Superparamagnetismus

- Alle magnetischen Momente der einzelnen Clusteratome sind relativ zueinander ausgerichtet, aber das gesamte Clustermoment verhält sich paramagnetisch
- Fluktuation des Gesamtmomentes aufgrund von thermischen Bewegungen
- Ausrichtung der magnetischen Cluster durch ein externes Feld B

$$\mu_{\text{eff}} = \mu \left(\cosh(N\mu B/kT) - kT/N\mu B \right)$$
(139)

$$\propto N\mu^2 B/3kT \text{ für } N\mu B/kT \ll 1$$
(140)

Langevin Formel, $\mu_B = 9 \cdot 10^{-24} \text{ J/T}$

• Bestimmung von μ aus einem Fit bei verschiedene Magnetfeldern bzw. Temperaturen

 $\mathcal{A} \mathcal{A} \mathcal{A}$

(日)

Superparamagnetismus

Fig. 4.10. Experimental magnetic moment per atom versus NB/T. The data points are \blacktriangle : Co₁₁₅, B = 0.335 tesla, T = 40÷250 K; \blacktriangledown : Co₁₅₇, B = 0.14÷0.34 tesla, T = 97 K; \blacksquare : Co₁₁₅, B = 0.14÷0.4 tesla, T = 97 K; \bigstar : Co₆₅, B = 0.14÷0.4 tesla, T = 97 K; \bullet : Co₁₁₅, B = 0.14÷0.54 tesla, T = 97 K. Note that the line of a least-squares fit passes through the origin [4.17]

Magnetische Anisotropie

- Wie wird aus Superparamagnetismus Ferromagnetismus ?
- Es muß eine Anisotropieenergie K · V geben, die die magnetischen Momente durch eine Kopplung an die geometrische Struktur stabilisiert
- Modell: Anisotropie ist mit dem Bahnmoment verknüpft, da der Spin nicht an die geometrische Struktur koppelt

 $\mathcal{A} \mathcal{A} \mathcal{A}$

- ₹ € ►

Ξ.

E.

Relaxation der Magnetisierung

- Nach der Ausrichtung im Magnetfeld werden die superparamagnetischen Cluster wieder relaxieren
- Dies ist ein thermisch aktivierter Prozeß, bei dem die Magnetisierung M mit der Zeit abfällt

$$M = M_s \exp{-\frac{t}{\tau}} \tag{141}$$

• Die Relaxationsrate τ hängt vom Volumen V, der Anisotropiekonstante K und der Temperatur T ab

$$\frac{1}{\tau} = f_0 \exp\left(\frac{KV}{k_B T}\right) \tag{142}$$

KV: Anisotropieenergie, $f_0 \approx 10^9 s^{-1}$

• Volumenanisotropie von Eisen ist z.B. $K_1 = 4.5 \cdot 10^4 \text{ J/m}^3$

Metallcluster Magr

Magnetismus

Relaxation der Magnetisierung

- Superparamagnetische Relaxationszeiten f
 ür Teilchen verschiedenen Gr
 ö
 ße D
- Bei **Blockingtemperaturen** von $T_B = 35$ K bzw. $T_B = 116$ K werden die Relaxationszeiten lang, so daß die Magnetisierungsrichtung als fest angesehen werden kann
- Blockingvolumen beträgt d = 10.5 nm bzw. d = 16.5 nm

$$V_B = \frac{4\pi}{3} \cdot \frac{d^3}{8} \tag{143}$$

Größenabhängigkeit des Magnetismus

- Stark vergrößerte magnetische Momente der Cluster verglichen mit den Festkörpern
- Das magnetische Moment der Cluster ist stark größenabhängig
- Erst für $n \ge 500$ gehen die magnetischen Momnente in die der Festkörper über
- Verhalten von Eisen bei n = 600 700 wird vermutlich durch eine Änderung der Gitterstruktur verursacht

 $\mathcal{A} \mathcal{A} \mathcal{A}$

∃ →

3

E

Metallcluster Magnetismus

Größenabhängigkeit des Magnetismus

- Oszilierendes
 Verhalten der magnetischen
 Momente
- Erklärung durch Wechselwirkung der eher lokalisierten 3d Elektronen mit den delokaliserten 4s Elektronen

SQA

毫

Ξ.

-

Metallcluster Magnetismus

Größenabhängigkeit des Magnetismus

 Füllen der 4s Orbitale bewirkt eine Verschiebung der Fermi Energie *E_F* und damit eine Variation der Besetzung der 3d Zustände

 $\mathcal{A} \mathcal{A} \mathcal{A}$

Metallcluster

Magnetismus

Größenabhängigkeit des Magnetismus

Das einfache Modell mit einem harmonischen Potential f
ür die 4s Elektronen beschreibt das Verhalten recht gut E ∢ ∃ ≯ < A Ξ SQ (A Metallcluster Magnetismus

Größenabhängigkeit des Magnetismus

- Als Cluster können auch Materialien magnetisch sein, die im Festkörper nicht ferromagnetisch sind
- Beispiel die den Fe, Co, Ni entsprechenden 4d Metalle Ru, Rh und Pd
- Pd erfüllt fast das Stoner Kriterium

 $\mathcal{A} \mathcal{A} \mathcal{A}$

Э

< ∃ >

< ロ > < 同 > < 三 >

Anwendung des Magnetismus

Cluster auf Oberflächen

- Für Anwendungen müssen die Cluster auf einer Oberflächen deponiert werden
- Durch den Kontakt mit der Oberfläche können die Eigenschaften der freien Cluster stark modifiziert werden
- Um die Eigenschaften von deponierten Cluster zu studieren, müsse die massenselektierten Cluster aus der Gasphase auf einer Oberfläche zerstörungsfrei gelandet werden
 - Die typische Bindungsenergie von Cluster liegt im Bereich von 1-2 eV pro Atom
 - Um eine Fragmentation der Cluster beim Landen zu vermeiden müssen diese weich gelandet werden
 - Soft Landing

 $\mathcal{A} \mathcal{A} \mathcal{A}$

- Typische Realisierung des Softlandings von massenselektierten Clusterionen
 - Kinetische Energie der Cluster muß klein sein (\leq 1 eV pro Atom)
 - Landen der Cluster auf einem "weichem" Substrat
- Es dürfen nur wenige Cluster auf der Oberfläche sein, um ein Zusammenwachsen der massenselektierten Cluster zu verhindern Typisch sind 3-4% einer Monolage
- Die Proben müssen kalt sein (< 40 K), um zu verhindern, das sich die Cluster auf der Oberfläche bewegen und dadurch zusammenwachsen

500

Hard Landing

 Deponieren eines Cu₁₄₇ Cluster auf einer Oberfläche bei verschiedenen kinetischen Energien (Chen, Lanzman, J.Phys.Chem. 98, 3527 (1994))

• Cu Cluster beim "eintauchen" in einen Argon Film

v = 4 km/s

<ロ>

- Deponieren eines Cu₁₄₇ Cluster auf einer Oberfläche mit v = 4 km/s
- Der Cluster wird nicht zerstört

• Apparatur zur Spektroskopie von deponierten Clustern

590

臣

• Typische "Soft Landing" Präparation von Clustern auf Oberflächen

590

臣

Magnetismus von deponierten Clustern

- Wie kann man die magnetischen Eigenschaften von deponierten Clustern bestimmen ?
- Es wird eine Methode benötigt, die selektiv die Eigenschaften der Cluster bestimmt
 - Stern Gerlach wie beim freien Cluster: Nein
 - Magneto-Optischer Kerr Effekt (MOKE): Sehr schwierig, da die Teilchendichte sehr klein ist: Nein
 - Röntgenzirkulardichroismus (XMCD): Ja Methode, die Bahn- und Spinmomente getrennt bestimmen kann Die Methode mittelt über viele Cluster
 - Spin-Polarisierte Rastertunnelspektroskopie: Ja Methode, die die lokalen magnetischen Eigenschaften bestimmen kann

Es können keine magnetischen Momente bestimmt werden

SQ Q

Metallcluster Magn

Magnetismus

Röntgenzirkulardichroismus (XMCD)

- Nutze die Elementselektivität von Rumpfniveauanregungen aus.
- Beispiel: Anregung von 2p Elektronen von Eisen (700 eV) und Nickel (850 eV)

 $\mathcal{A} \mathcal{A} \mathcal{A}$

王

Metallcluster

Magnetismus

Röntgenzirkulardichroismus (XMCD)

 Der magnetische Zirkulardichroismus nutzt die Asymmetrie bei der Anregung von Rumpfelektronen mit zirkular polarisierter Röntgenstrahlung

 $\mathcal{A} \mathcal{A} \mathcal{A}$

32

<ロ > < 同 > < 同 > < 三 > < 三 > <

Magnetismus

Röntgenzirkulardichroismus (XMCD)

- Einfaches Zwei-Stufen Modell
 - Ein zirkular polarisiertes Photon erzeugt ein Spin-polarisiertes Elektron
 - Das Spin-polarisierte Elektron 2 testet die Spin-polarisierten 3d Zustände des Clusters, die für die magnetischen Eigenschaften verantwortlich sind

<ロト < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

 $\mathcal{A} \mathcal{A} \mathcal{A}$

Metallcluster Magnetismus

Röntgenzirkulardichroismus (XMCD)

• Aus den Dichroismusspektren können die magnetischen Spinund Bahnmomente μ_S und μ_B mit Hilfe von sogenannten Summenregeln ermittelt werden

$$\mu_{\mathrm{Bahn}} \propto \int (\Delta \mu_{L3} + \Delta \mu_{L2}) dE$$

 $\mu_{\mathrm{Spin}} \propto \int (\Delta \mu_{L3} - 2 \cdot \Delta \mu_{L2}) dE + 7 \langle T_z \rangle$

S Q C

Magnetismus von deponierten Clustern

- Wie unterscheidet sich der Magnetismus von denen freier Cluster, d.h. welche Einfluß haben verschiedene Oberflächen.
- Wann sind die Cluster magnetisch ?
 - Bestimmung der Remananz der Cluster z.B. durch eine Hysteresemessung
- Sehr kleine Cluster sind typisch superparamagnetisch und müssen durch ein magnetisches Feld ausgerichtet werden
 - Starkes externes Feld von einigen Tesla eines supraleitenden Magneten oder
 - Ankopplung an eine ferromagnetische Schicht/Oberfläche, die den Cluster über eine Austauschkopplung magnetisiert

 $\mathcal{A} \mathcal{A} \mathcal{A}$

Metallcluster Magnetismus

Magnetismus von deponierten Clustern

- Beispiel 1: Co_n Cluster auf einer Platinoberfläche (Gambardella et al. Nature 416, 301 (2002);Science 300, 1130 (2003))
- Die Cluster zeigen stark erhöhte magnetische Spin- und Bahnmomente

<ロト < 団ト < 団ト < 団ト = 三日

Metallcluster Magnetismus

Magnetismus von deponierten Clustern

• Die magnetische Asymmetrie zeigt einen sehr ähnliche Verlauf wie die magnetischen **Bahnmomente**

<ロ > < 同 > < 三 > < 三 > < 三 > < 三 > < 二 > < 二 > < 二 > < 二 > < 二 > < 二 > < 二 > < 二 > < 二 > < 二 > < 二 > < 二 > < 二 > < 二 > < 二 > < 二 > < 二 > < 二 > < 二 > < 二 > < 二 > < 二 > < 二 > < 二 > < 二 > < 二 > < 二 > < 二 > < 二 > < 二 > < 二 > < 二 > < 二 > < 二 > < 二 > < 二 > < 二 > < 二 > < 二 > < 二 > < 二 > < 二 > < 二 > < 二 > < 二 > < 二 > < 二 > < 二 > < 二 > < 二 > < 二 > < 二 > < 二 > < 二 > < 二 > < 二 > < 二 > < 二 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

500

臣

< ∃ >

Metallcluster Magnetismus

Magnetismus von deponierten Clustern

- Sehr starke magnetische Asymmetrie von Ketten
- Geometrie der Cluster ist von großer Bedeutung
- Ferromagnetisches Verhalten bereits weniger Atome allerdings bei T=10 K folgt aus der Messung der Hysterese

 $\mathcal{A} \subset \mathcal{A}$

-∢ ∃ ▶

< □ > < □ > < □ > .

Metallcluster Magnetismus

Magnetismus von deponierten Clustern

- Beispiel 2: Massenselektierte Fe_n Cluster und Fe Nanostrukturen auf magnetischen Oberflächen
- Besonders interessant sind die Bahnmomente, da diese mit der Asymmetrie beknüpft sind
- Gleichfalls stark erhöhte magnetische Momente, wobei die Bahnmomente stark mit der Clustergröße variieren
- Effekt ist noch nicht richtig verstanden

Antiferromagnetische Kopplung

- Im Fall einer ferromagnetischen Kopplung sind alle magnetischen Momente parallel ausgerichtet
- Bei einer anti-ferromagnetischen Kopplung erhält man dementsprechend eine antiparallele Kopplung der Momente
- Was ist nun f
 ür dem Fall kleiner, anti-ferromagnetisch koppelnder Cluster zu erwarten ?
- Frustrierte Spins f
 ühren zu einer nicht kollinearen Kopplung der magnetischen Momente

Antiferromagnetisch gekoppelte Cluster

- Beispiel: Cr auf Ni und Fe
- Großer Einfluß des Substrates (Unterlage). Verschwindene Magnetisierung im Fall eines Ni Substrates

Metallcluster

Magnetismus

Antiferromagnetische Cluster: Cr₃ auf Au

