Excercises „Methoden Moderner Röntgenphysik II"

Date, Room and Time: 20. April 2010 , Seminarraum 3, 16:00-17:30

- X-Ray Reflectivity -

In Born-Approximation, the x-ray intensity reflected by a surface is given by

$$
I\left(q_{z}\right) \propto \frac{1}{q_{z}^{4}}\left|\int_{-\infty}^{\infty} \frac{d \rho(z)}{d z} \exp \left(i q_{z} z\right) d z\right|^{2}
$$

with the wave vector transfer q_{z} along z and the electron density profile $\rho(z)$ along z.

1) Calculate the reflected intensity of the following "sample surface with steps" by first generating the function $d \rho(z) / d z$ averaged over x.

2) Compare the result with a reflectivity of a one-layer system with substrate density ρ_{0}, film density $\rho_{0} / 2$ and film thickness d.

For a smooth single surface of a substrate with refractive index $n=1-\delta$ (no absorption) the exact Fresnel reflectivity $I(a)$ is given by

$$
I(\alpha)=\left|\frac{k_{z 1}-k_{z 2}}{k_{z 1}+k_{z 2}}\right|^{2} \quad \text { with } \quad k_{z 1}=\frac{2 \pi}{\lambda} \sin \alpha \quad \text { and } \quad k_{z 2}=\frac{2 \pi}{\lambda} \sqrt{n^{2}-\cos ^{2} \alpha}
$$

and the incident angle a.
3) Show that the Fresnel reflectivity is identical to the Born approximation for a smooth surface for $\sin a \gg 2 \delta$.

