Methoden moderner Röntgenphysik I

Coherence based techniques III

Christian Gutt DESY, Hamburg

christian.gutt@desy.de

15. January 2009

Outline

18.12. 2008 Introduction to Coherence

8.01. 2009 Structure determination techniques

15.01.2009 Correlation Spectroscopy

Time and frequency dependent correlation functions

$$\rho(r,t) = e^{iHt/\hbar} \rho(r,0) e^{-iHt/\hbar}$$

Time dependence in the Heisenberg represantion H - Hamilton operator of the system

$$\rho(r,t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-i\omega t} \rho(r,\omega)$$

time and frequency dependent electron densities are conjugate quantities connected via Fourier Transform

$$\rho(r,\omega) = \int_{-\infty}^{\infty} e^{i\omega t} \rho(r,t)$$

C

$$(r,t,r',t') = \left\langle \rho(r,t)\rho(r',t') \right\rangle$$
 +

time dependent correlation function

Time and frequency dependent correlation functions

system spatially homogenous and temporal stationary

$$C(r_1, t_1, r_2, t_2) = \left\langle \rho(r_1, t_1) \rho(r_2, t_2) \right\rangle = \left\langle \rho(r_1 - r_2, t_1 - t_2) \rho(0, 0) \right\rangle = C(r, t)$$

$$r = r_1 - r_2$$
, and $t = t_1 - t_2$

Intermediate scattering function $S(q,t) = \iint dr_1 dr_2 \left\langle \rho(r_1,0)\rho(r_2,t) \right\rangle e^{iq(r_1-r_2)} = \left\langle \rho(-q,0)\rho(q,t) \right\rangle = \tilde{C}(q,t)$

Dyanmic scattering function

$$S(q,\omega) = \frac{1}{2\pi} \int_{-\infty}^{\infty} d\omega e^{-i\omega t} S(q,t) = \widetilde{C}(q,\omega)$$

Static scattering function

$$S(q,t=0) = \frac{1}{2\pi} \int_{-\infty}^{\infty} d\omega S(q,\omega)$$

How to calculate the dynamic correlation functions? 1. Linear response theory

 $H = \int dr \ F(r,t)\rho(r,t) \qquad \begin{array}{l} \text{H interaction Hamiltonian} \\ \text{F Force} \end{array}$

$$\rho(r,t) = \iint dr' dt' \chi(r,r',t-t')F(r',t')$$

$$\rho(r,\omega) = \int dr' \chi(r,r',\omega)F(r',\omega)$$
response function χ

Fluctuation Dissipation Theorem

$$S(q, \omega) = \frac{2k_B T}{\omega} \operatorname{Im} \chi(q, \omega)$$

valid for thermal equilibrium

Fluctuation Dissipation Theorem

Example : the driven, damped harmonic oscillator

equation of motion $\ddot{x} + \omega_0^2 x + \gamma \dot{x} = f / m$

frequency dependent
$$\chi(\omega) = \frac{x(\omega)}{f(\omega)} = \frac{1}{m} \frac{1}{-\omega^2 + \omega_0^2 - i\omega\gamma}$$

Im $\chi(\omega) = \frac{1}{2m\omega_1} \left[\frac{\gamma/2}{(\omega - \omega_1)^2 + (\gamma/2)^2} - \frac{\gamma/2}{(\omega + \omega_1)^2 + (\gamma/2)^2} \right]$
$$\omega_1 = \sqrt{\omega_0^2 - \frac{\gamma^2}{4}}, \quad \tau^{-1} = \frac{1}{2}\gamma \left[1 - (1 - 4\omega_0^2\gamma^{-2})^{1/2} \right]$$

(a) w_1 is real -> Lorentzian lines, centered at w_1 with HWHM $\gamma/2$ (b) w_1 is imag -> Lorentzian line, centered at 0 with HWHM τ

How to calculate the dynamic correlation functions? 2. Differential equations of correlation functions

Example : Fick's law of diffusion

$$\frac{\partial}{\partial t}C(R,t) = D\nabla^2 C(R,t) \quad (1)$$

Spatial Fourier transform of Eq. (1)

$$\frac{\partial}{\partial t}S(q,t) = -Dq^2S(q,t) \quad (2)$$

Intermediate Scattering function for free diffusion

$$S(q,t) = \exp(-Dq^{2}t) \quad (3)$$

Dynamic Scattering function for free diffusion
$$D = \frac{k_{B}T}{6\pi\eta R}$$

$$S(q,\omega) = \frac{Dq^2}{\omega^2 + (Dq^2)^2} \quad (4)$$

Measuring in frequency or time domain? equilibrium processes

typical frequency of X-rays hv = 8 keV $h = 4.14 \cdot 10^{-15} eVs$

Time domain

- + cover a very large time window 1000 seconds -> 1e-12 seconds (XFEL)
- + sensitive to non-equilibrium processes

-photon hungry

XPCS is a "Photon-Hungry" Method

X-ray Photon Correlation Spectroscopy

Fluctuating Speckle Pattern

Intensity Autocorrelation Function

$$< I(q,0)I(q,\tau) >= \frac{1}{T} \int_{0}^{T} I(q,t)I(q,t+\tau)$$

remember $I(q,t) = \langle \rho(q,t)\rho(-q,t) \rangle$

$$\left\langle I(q,t_1)I(q,t_2)\right\rangle = \left\langle \rho(q,t_1)\rho(-q,t_1)\rho(q,t_2)\rho(-q,t_2)\right\rangle$$

Gaussian momentum theorem and Siegert relation

$$\langle \rho(q,t_1)\rho(-q,t_1)\rho(q,t_2)\rho(-q,t_2) \rangle = \langle \rho(q,t_1)\rho(-q,t_1) \rangle \langle \rho(q,t_2)\rho(-q,t_2) \rangle + \langle \rho(q,t_1)\rho(q,t_2) \rangle \langle \rho(-q,t_1)\rho(-q,t_2) \rangle + \langle \rho(q,t_1)\rho(-q,t_2) \rangle \langle \rho(q,t_1)\rho(-q,t_2) \rangle = 0$$

 $\left\langle \rho(q,t_1)\rho(-q,t_1)\rho(q,t_2)\rho(-q,t_2) \right\rangle = \left\langle \rho(q,t_1)\rho(-q,t_1) \right\rangle \left\langle \rho(q,t_2)\rho(-q,t_2) \right\rangle$ $+ \left\langle \rho(q,t_1)\rho(-q,t_2) \right\rangle \left\langle \rho(q,t_1)\rho(-q,t_2) \right\rangle$

 $= \left\langle \rho(q,0)\rho(-q,0) \right\rangle \left\langle \rho(q,0)\rho(-q,0) \right\rangle + \left\langle \rho(q,0)\rho(-q,\tau) \right\rangle \left\langle \rho(q,0)\rho(-q,\tau) \right\rangle$

$$\langle I(q,0)I(q,\tau)\rangle = \langle S(q,0)\rangle^2 + |\langle S(q,\tau)\rangle|^2$$

phase information lost, if S is complex (QM) $k_BT \ll \hbar\omega$

Effects of partial coherence

Heterodyne mixing in XPCS

analogue to Holography – built in a reference source $\rho(q,t) = \rho_0 + \rho(q,t)$

$$\frac{\langle I(q,0)I(q,\tau)\rangle \sim 2I_{s}I_{r}\langle S(q,\tau)\rangle + I_{s}^{2} |\langle S(q,\tau)\rangle|^{2}}{field\ \text{correlation\ function}}$$

$$I_{s} = \left\langle \rho(q,t)\rho(-q,t) \right\rangle, I_{r} = \left\langle \rho_{0}\rho_{o}^{*} \right\rangle$$

By choosing a strong reference signal the intensity autocorrelation function is dominated by S(q,t) - on the expense of signal to noise ratio.

Examples

Surface fluctuations

Heterodyne mixing Transition propagating - overdamped behavior

Bulk fluctuations

Colloidal diffusion Domain dynamics in Chromium

Fluctuating Interfaces: Capillary Waves

Scattering Geometry & Notation

Electron Density: Surface Scattering

Capillary waves on liquid water

Correlation functions of surface fluctuations

Correlation functions of surface fluctuations

Spectral features of damped capillary waves

Mixtures of liquid water and glycerol tuning the viscosity (damping) as a function of temperature

Measurement

Diffusion in Colloidal Suspensions

Free diffusion is valid for large length scales. What is happening when the probed length scales becomes comparable to particle size?

Diffusion in Colloidal Suspensions

Hydrodynamic function H(q)

indirect hydrodynamic interactions mediated by the solvent medium

$$H(q) = \frac{D(q)}{D_0} S(q)$$

H(q) < 1

indirect hydrodynamic interactions slow down the dynamics

Antiferromagnetic Domain fluctuations in Chromium

Charge density wave satellite peaks (CDW)

O.G. Sphyrko et al. Nature 447, 68 (2007)

Intensity Autocorrelation Function

non Arrhenius behavior

CDW satellite peak

O.G. Sphyrko et al. Nature 447, 68 (2007)

Electron bunch trains (with up to 3250 bunches à 1 nC)

XPCS at XFEL

Sequential technique $g_{2}(\tau) = \frac{\langle I(t)I(t+\tau) \rangle}{\langle I(t) \rangle^{2}} = 1 + \beta |f(\tau)|^{2}$

Split-Pulse technique

$$S(\tau) = I(t) + I(t + \tau)$$

$$c_2(\tau) = \frac{\left\langle S(\tau)^2 \right\rangle - \left\langle S(\tau) \right\rangle^2}{\left\langle S(\tau) \right\rangle^2} = \frac{\beta}{2} \left(1 + \left| f(\tau) \right|^2 \right)$$

X-ray Split and Delay Unit

Development of an X-ray delay unit for correlation spectroscopy and pump - probe experiments

Dissertation zur Erlangung des Doktorgrades des Fachbereichs Physik der Universität Hamburg

vorgelegt von

Wojciech Roseker aus Bydgoszcz, Polen Hamburg 2008

First XFEL light in Stanford 2009

to come XFEL Japan, European XFEL DESY, PSI, Korea ?, China ?

The End