Methoden moderner Röntgenphysik I

Coherence based techniques II

Christian Gutt DESY, Hamburg

christian.gutt@desy.de

8. January 2009

Outline

18.12. 2008 Introduction to Coherence

8.01. 2009

- Structure determination techniques
- Oversampling
- Coherent Diffractive Imaging
- Fourier transform Holography

15.01.2009 Correlation Spectroscopy

Last lecture

Longitudinal coherence

longitudinal coherence depends on bandwidth

on distance and source size

van Cittert - Zernike Theorem

complex degree of coherence

$$\mu(0,P) = \frac{e^{-i\psi} \iint\limits_{S} I(\xi,\eta) e^{ik(p\xi+q\eta)} d\xi d\eta}{\iint\limits_{S} I(\xi,\eta) e^{ik(p\xi+q\eta)} d\xi d\eta}$$

Fourier Transform of the source intensity distribution!

Axial symmetry
$$\mu(0,P) = \frac{e^{-i\psi} \int_{0}^{\infty} I(\rho) J_{0}(k\rho\theta) \rho \, d\rho}{\int_{0}^{\infty} I(\rho) \rho \, d\rho}$$

Speckle Pattern

"Everything interferes with everything"

Solution to the phase problem for periodic objects classical crystallography

- direct methods (using the fact that the density is real and positive)
- anomalous X-ray scattering (MAD)
- heavy atoms

• ...

- + atomic resolution
- need for crystals
- x-ray damage

Structure determination of non-periodic objects a zoo of scanning x-ray techniques

- scanning transmission x-ray microscope
- tomography (medical imaging)

• ...

- + no need for crystals
- -+ 20-30 nm resolution
- limited dynamics

Coherence based techniques for structure determination

Ultrafast (femtoseconds) imaging techniques for non-periodic objects

- Coherent diffractive imaging
- Fourier transform holography
- Holographic imaging
- · Ptychography
- and all combinations thereof....

Structure Determination from Oversampled Speckle Pattern

D. Sayre, "Some implications of a theory due to Shannon," Acta Cryst. **5**, 843 (1952). J. R. Fienup, "Phase retrieval algorithms: a comparison," Appl. Opt. **21**, 2758-2769 (1982).

Phase retrieval and oversampling

No inversion possible

Idea: sample k finer than Bragg frequency, e.g. $\sqrt[3]{2}$

$$|F(k_x, k_y, k_z)| = \begin{vmatrix} \sum_{x=0}^{l-1} & \sum_{y=0}^{m-1} & \sum_{z=0}^{n-1} & \rho(x, y, z) \\ \times e^{2\pi i [k_x x/(\sqrt[3]{2}l) + k_y y/(\sqrt[3]{2}m) + k_z z/(\sqrt[3]{2}n)]} \\ k_x = 0, \dots, \sqrt[3]{2}l - 1, \quad k_y = 0, \dots, \sqrt[3]{2}m - 1, \\ k_z = 0, \dots, \sqrt[3]{2}n - 1 \end{vmatrix}$$

,

Number of independent equations = number of unknown variables $(\sqrt[3]{2})^{3}$ (L x M x N) / 2 = L x M x N

Shannon's theorem in X-ray scattering

If a diffraction pattern is sampled at spatial frequencies at least twice that corresponding to the size of the sample the phases can be recovered by means of iterative algorithms.

oversampling parameter

$$\sigma = \frac{\text{speckle size}}{\text{pixel size}} = \frac{\lambda d}{WP} \ge 2$$

= 770

The iterative algorithm due to Gerchberg-Saxton-Fienup

The hybrid-input-output (HIO) algorithm

get some a priori knowledge about the support i.e. shape of your object

area inside support S

- 0. Add random phases to the measured amplitudes $|F(\mathbf{k})|$ (square root of the measured intensities), which gives $G_1(\mathbf{k})$.
- 1. Substitute the amplitudes with the measured ones $(\rightarrow G'_1(\mathbf{k}))$.
- 2. Fourier transform into real space $(\rightarrow g'_1(\boldsymbol{x}))$.
- 3. Set negative pixels^a or pixels that lie outside of the support to zero $(\rightarrow g_2(x))$.
- 4. Fourier transform back into reciprocal space $(\rightarrow G_2(\mathbf{k}))$.

measure of convergence

$$e_{k}^{(n)} = \sqrt{\frac{\sum_{k} (|G_{n}(k)| - |F(k)|)^{2}}{\sum_{k} |F(k)|^{2}}}$$

The 'Object'

Claude Monet, Seerosenteich II 1899

and its reconstruction...

an unknown object

and it's reconstruction

Experiment using 8 keV Photonen

2 microns

Resolution 30 nm

Missing Data 1

First experimental realization at a synchrotron source

J. Miao, P. Charalambous, J. Kirz, D. Sayre, "Extending the methodology of x-ray crystallography to allow imaging of micrometre-sized non-crystalline specimens," Nature **400**, 342-344 (1999).

J. Miao, P. Charalambous, J. Kirz, D. Sayre, "Extending the methodology of x-ray crystallography to allow imaging of micrometre-sized non-crystalline specimens," Nature **400**, 342-344 (1999).

First experimental realization at an FEL source

H. Chapman et al. Nature Physics 2, 839 (2006)

pulse #1

pulse #2

H. Chapman et al. Nature Physics 2, 839 (2006)

Reconstruction

H. Chapman et al. Nature Physics 2, 839 (2006)

Fourier Transform Holography

Small reference hole

Large reference hole

More than one reference hole

First experimental FTH realization using hard X-rays

Experiment with 0.15 nm Photonen

1 micron

Combination of Holography and Phase Retrieval

L.-M. Stadler, C. Gutt, T. Autenrieth, O. Leupold, S. Rehbein, G. Grübel