Modern Crystallography II

Topics:

- 20.11. **Crystalline state** definition, interaction types in crystalline materials lattice types, symmetry operations, reciprocal lattice
- 27.11. X-ray diffraction (kinematic theory) Bragg equation, Laue equations, Ewald sphere, atomic form factor, structure factor, absorption
- 4.12 **experimental X-ray structure determination** experimental methods, phase problem, phase retrieval methods, structure refinement
- 11.12 **modern applications of crystallography** protein crystallography, powder diffraction, time-resolved crystallography (pump and probe)

Repetition: reciprocal lattice & Laue equations

diffraction maxima for (h,k,l = integer):

$$\vec{a} \cdot \vec{s} = h$$
$$\vec{b} \cdot \vec{s} = k$$
$$\vec{c} \cdot \vec{s} = l$$

reciprocal lattice vector:

$$\vec{d}^*_{hkl} = h \cdot \vec{a}^* + k \cdot \vec{b}^* + l \cdot \vec{c}^*$$

combination of (1) and (2):

$$\begin{pmatrix} h\vec{a}^{*} + k\vec{b}^{*} + l\vec{c}^{*} \end{pmatrix} \cdot \vec{a} = h (h\vec{a}^{*} + k\vec{b}^{*} + l\vec{c}^{*}) \cdot \vec{b} = k (h\vec{a}^{*} + k\vec{b}^{*} + l\vec{c}^{*}) \cdot \vec{c} = l$$

temperature factor

three dimensional case:

$$[f_j]^T = f_j \exp\left(-\frac{8}{3}\pi^2 \overline{u_j^2} \sin^2 \theta / \lambda\right) \qquad B_j = 8\pi^2 \overline{u_{\perp j}^2}$$

Absorption of X-rays

Lambert-Beer equation:

$$I = I_0 \exp(-\mu d)$$

Transmission:

$$T = \frac{I}{I_o} = \exp(-\mu d)$$

Mass absorption coefficents for 15 keV X-rays:

Element	µ [mm ^{-1]}	T [d=1mm]	
Be	0.0568	0.945	
Si	2.4085	0.090	
РЬ	127.20	5x10 ⁻⁵⁶	

4-circle diffractometers

X-ray tube vs. synchrotron

source	Monochromatic photon flux in 300 x 300 µm	Monochromatic photon flux in 5 x 5 µm
X-ray tube	10 ⁷ - 10 ⁸ ph/sec	10 ⁷ ph/sec
2 nd gener. bending magnet	10 ⁸ ph/sec	10º ph/sec
3 rd generation undulator	10 ¹² -10 ¹³ ph/s	10 ¹² -10 ¹³ ph/s

Modern crystallographic data collection

Beamline X105A at the Swiss Light Source

rotation photograph of a vitamin B12 crystal

Information from a diffraction pattern

Geometrical arrangement of spots: information about unit cell size and symmetry

Intensity of spots:

Information about the motive (molecule) in the assymetric unit

Problem: missing phases!

Course of a crystallographic structure determinations:

- 1. collection of many (all) different reflections (diffraction experiment)
- 2. Indexing of reflections (determination of unit cell)
- 3. Extraction of intensities and their sigma's from diffraction spots
- 4. Application of absorption, polarization and geometrical corrections
- 5. Structure solution and refinement (phase retrieval and refinement)

Friedels law

"The Diffraction experiment generates a center of symmetry"

-> enantiomorphs are indistinguishable in an diffraction experiment

Symmetry of diffraction patterns

diad axis along b: $(x,y,z) \rightarrow (-x,y,-z)$

$$F_{h} = \sum_{j=1}^{N} f_{j} \exp\{2\pi i (hx_{j} + ky_{j} + lz_{j})\}$$
$$F_{h} = \sum_{j=1}^{N/2} f_{j} \exp\{2\pi i (hx_{j} + ky_{j} + lz_{j})\} + \{2\pi i (-hx_{j} + ky_{j} - lz_{j})\}$$

$$F_{h} = \sum_{j=1}^{N/2} f_{j} \exp\{2\pi i (ky_{j})\} + \{2\pi i (hx_{j} + lz_{j})\}$$

result for structure amplitudes:

$$\left|F_{hkl}\right| = \left|F_{h\bar{k}l}\right| = \left|F_{\bar{h}k\bar{l}}\right| = \left|F_{\bar{h}k\bar{l}}\right|$$

Systematic absent reflections (I)

some reflection classes are forbidden by symmetry:

- Centered unit cell: integral extinctions, affects all (hkl)
- Mirror glide planes: serial extinctions, affects reflection planes: (hk0), (h0l),(0kl)
- Srew axes: axial extinction, affects axes reflection: (h00), (0k0),(00l)

Example C-face centering: $(x,y,z) \rightarrow (x+1/2, y+1/2, z)$

$$F_{h} = \sum_{j=1}^{N/2} f_{j} \left[\exp\{2\pi i (hx_{j} + ky_{j} + lz_{j})\} + \exp\{2\pi i (hx_{j} + ky_{j} + lz_{j}) + \pi i (h + k)\} \right]$$

$$\exp(i\varphi) = \exp(i(\varphi + 2\pi n)) \qquad \exp(i\varphi) = -\exp(i(\varphi + (2n + 1)\pi))$$

$$F_{h} = \sum_{j=1}^{N/2} f_{j} \left[\exp\{i(\varphi)\} + \exp\{i(\varphi) + \pi i (h + k)\} \right]$$

$$\rightarrow F_{h} = 0 \text{ for } h + k = 2n + 1$$

Systematic absent reflections (II)

Lattice	Absences	Symmetry element	Absences
P	None	$\overline{1}$ $\overline{2}$ $\overline{7}$ $\overline{7}$ $\overline{7}$	
A	k+l = 2n+1	1, 3, 4, 6, m 2, 3, 4, 6	None
В	h+l=2n+1	$a \perp$ to b axis	h0l for $h = 2n + 1$
С	h+k=2n+1	$a \perp$ to c axis	hk0 for $h = 2n + 1$
F	h, k, l not all odd	$b \perp$ to <i>a</i> axis	0kl for $k = 2n + 1$
	or all even	$b \perp$ to c axis	hk0 for $k = 2n + 1$
Ι	h+k+l=2n+1	$c \perp$ to <i>a</i> axis	0kl for $l = 2n + 1$
		$c \perp$ to b axis	h0l for $l = 2n + 1$
Symmetry element		$n \perp$ to <i>a</i> axis	0kl for $k + l = 2n + 1$
		$n \perp$ to b axis	h0l for $h + l = 2n + 1$
$2_1 \parallel$ to <i>a</i> axis	h00 for h = 2n + 1	$n \perp$ to c axis	hk0 for $h + k = 2n + 1$
$2_1 \parallel \text{to } b \text{ axis}$	0k0 for k = 2n + 1		oct that the systematic
$2_1 \parallel$ to <i>c</i> axis	00 <i>l</i> for $l = 2n + 1$		

Example: systematic absent reflections for silicon

space group: Fd-3m = F 4/d - 3 2/m

$$hkl : h = 2n + 1$$

or $h, k, l = 4n + 2$
or $h, k, l = 4n$