High Harmonic Generation – HHG

 Erzeugung von hohen Harmonischen von intensiver Laserstrahlung an Gasen

イロト イヨト イヨト イヨト

- 2

HHG

High Harmonic Generation – HHG

Beobachtungen

- Ti:Sapphir Laser \approx 800 nm Grundwellenlänge
- Harmonische n > 300 und somit Photonenenergien von > 500 eV wurden beobachtet
- Kohärente, ultrakurze Röntgenpulse mit kleiner Divergenz
- Pulse sind zu kurz, um ein Plasma zu erzeugen

High Harmonic Generation – HHG

- Pulslänge von "State of the Art" Ti:Saphir Laser \approx 5-10 fs = $10^{-14}~\text{s}$
- High-Power Verstärkersysteme: 15-25 fs

High Harmonic Generation – HHG

J. Zhou, J. Peatross, M. M. Murnane, H. C. Kapteyn, and I. P. Christov, PRL **76**, 752 (1006) Röntgenphysik

HHG

High Harmonic Generation – HHG

- $\hbar\omega_{cutoff} \cong I_p + 3.2 \cdot U_p$
- Ip: Ionisationspotential des Atoms
- U_p: Quiver-Energie des Elektrons durch das Feld der Laserwelle

HHG

High Harmonic Generation – HHG

Drei Stufen Modell

- Das hohe elektrische Feld ionisiert das Atom
- Das Elektron oszilliert in dem Laser Feld
- Elektron kollidiert mit dem Atom und rekombiniert

HHG – Energie

 Berechne das ponderomotive Potential in dem sich das Elektron bewegt:

Gemittelte kinetische Energie eines freien Elektrons in einem elektrischen Feld E_0 mit der Frequenz ω

$$F = ma = eE_0e^{-i\omega t} = m\frac{dv}{dt}$$

$$v = \int \frac{eE_0}{m}e^{-i\omega t} = \frac{eE_0}{-i\omega t}e^{-i\omega t}$$

$$U_p = \text{Kin. Energie}_{Zeitmittel} = \frac{1}{2}m\bar{v^2}$$

$$= \frac{e^2E_0^2}{2m\omega^2}\left[e^{-i\omega t}\right]_{Zeitmittel}^2 = \frac{e^2E_0^2}{4m\omega^2}$$

HHG – Energie

Was ergeben sich für Zahlen für einen typischen Ti:Saphir Laser

• Pointing-Vektor:

$$I = \bar{S} = \sqrt{rac{\epsilon_0}{\mu_0}} \left| E^2 \right|$$

Potential:

$$U_{p} = \frac{e^{2}E_{0}^{2}}{4m\omega^{2}} = 9.33 \cdot 10^{-14} \cdot I \left[\frac{W}{cm^{2}}\right] \cdot (\lambda[\mu m])^{2} [eV]$$

= 60 eV@10¹⁵W/cm⁻² bei λ = 800 nm

• Energieskala für die HHG in Helium

$$I_p + 3.2 U_p = 24.6 \ eV + 192 \ eV$$

 $\cong 220 \ eV$

HHG – Trajektorie

Wie sieht nun die Trajektorie eines Elektrons in diesem Potential aus ? Annahmen:

- Das Elektron ist plötzlich, komplett frei
- Das Elektron startet mit v = 0

$$F = ma = eE_0e^{-i\omega t} = m\frac{dv}{dt}$$
$$v = \int \frac{eE_0}{m}e^{-i\omega t}dt = \frac{eE_0}{-i\omega m}e^{-i\omega t}\Big|_{t_i}^{t'} = \frac{eE_0}{-i\omega m}\left(e^{-i\omega t'} - e^{-i\omega t_i}\right) = \frac{dx}{dt}$$

HHG – Trajektorie

- Die meisten Elektronen werden nicht mit dem Atom wieder kollidieren und rekombinieren, da die Phase nicht stimmt
- Die transversale Ausdehnung der Elektronenwellenfunktion reduziert die Kollisionsrate weiter

/╗▶ ◀ ⋽▶ ◀

HHG – Trajektorie

• Berechne die Trajektorie

$$\begin{aligned} \frac{dx}{dt} &= \frac{eE_0}{-i\omega m} \left(e^{-i\omega t'} - e^{-i\omega t_i} \right) \\ x &= \int_{t_i}^{t_f} \frac{eE_0}{-i\omega m} \left(e^{-i\omega t'} - e^{-i\omega t_i} \right) dt' = \frac{eE_0}{-\omega^2 m} \left(e^{-i\omega t'} - e^{-i\omega t_i} \right) \Big|_{t_i}^{t_f} \end{aligned}$$

- Elektron startet am Atom: $x(t_i) = 0$
- Elektronentrajektorie muß am Atom enden: $x(t_f) = 0$
 - Löse die Gleichung für t_f
 - Finde $v(t_f)$
 - Berechne die Kollisionsenergie $E = \frac{1}{2}mv^2$

く 同 ト く ヨ ト く ヨ ト -

HHG

HHG – Energietransfer

- Maximale Rückkehrenergie ist 3.17Up
- Maximaler klassischer Energiegewinn wenn das Elektron in den Grundzustand übergeht

_

$$E_{cutoff} = I_p + 3.17 U_p$$

0 17/1

∃ ▶ ∢

HHG

HHG – Ultrakurze Pulse

- Typisches Verhalten der HHG Emission
- HHG erfolgt zweimal während eines Lichtzyklus
- HHG Pulse sind sehr kurz: Erreicht hat man inzwischen ca. 200 as=0.2 fs
- Damit ist man im Bereich der atomaren Zeitskala, der Bohrzeit ≅ 150*as*. Klassische Zeit, die das Elektron im H-Atom f
 ür eine Umrundung des Kerns ben
 ötigt
- Neues Gebiet der Attosekunden Physik

HHG – Phasematching

Fokusierung der Strahlung in eine Fiber als Waveguide

Science 280, 1412 (1998), Phys.Rev.Lett. 83, 2187 (1999)

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

HHG – Phasematching

$$k = \frac{2\pi}{\lambda} \left(1 + P\delta(\lambda) - \frac{1}{2} \left[\frac{u\lambda}{2\pi a} \right]^2 - \frac{1}{2} \frac{N_e r_e \lambda^2}{\pi} \right)$$
$$= Vakuum + Gas + Waveguide + Ionisation$$

- Mit Hohlfibern als Wellenleitern kann man für niedrige Harmonische ein Phase-Matching realisieren.

Röntgen und EUV Optik

- Optische Materialien
- Abbildungseigenschaften

- Monochromatoren
- Optikfehler
- Ray Tracing

Optische Materialien

- Es gibt kein dickes, optisch transparentes Material f
 ür Photonenenergie > 11 eV !
- \Rightarrow Keine Linsen, keine Prismen, ...
 - Es können somit nur reflektive Optiken, also Spiegel eingesetzt werden.
 - Großes Problem f
 ür die Lithographie zur Herstellung von Halbleiterstrukturen, da die bekannten und bew
 ährten Techniken nicht mehr eingesetzt werden k
 önnen
 - Kürzeste Lithographie Wellenlänge ist zur Zeit 157 nm = 7.9 eV (F₂-Laser)
 - Erreicht werden sollen 13.5 nm = 92 eV
 - Zur Zeit wird deshalb die EUV Lithographie entwickelt EUV = Extended UV
 - Welche Materialien sind geeignet ?

< 回 > < 三 > < 三 >

Reflektivität von Materialien

Röntgenphysik

Reflektivität von Materialien

Röntgenphysik

Reflektivität von Materialien

- Bild Reflektivität Al, Au, C
- Bis ca. 30 eV kann unter Normalem Einfall (Normal incidence) gearbeitet werden
- Bei höheren Energien muß streifender Einfall gewählt werden
- Für einzelne Energien können Multilayer Interferenzspiegel hergestellt werden
- Optimierung von Schichten für EUV Lithographie

< 回 > < 回 > < 回 >

EUV Lithographie 1

- ab ca. 2009 wird EUV Strahlung (13.5 nm) Strahlung benötigt um noch kleinere Halbleiterstrukturen herzustellen
- Probleme:
 - Strahlung breitet sich nur im Vakuum aus (Neu)
 - Es können nur reflektive Optiken verwendet werden (neu)
 - Staub auf Masken
 - Welche Strahlungsquellen ?
 - . . .

< ロ > < 同 > < 回 > < 回 >

Multilayer 1

 Reflektivität f
ür senkrechten Einfall verschiedener Materialien und von Schichtsystemen

Röntgenphysik

Multilayer 2

• Reflektion in einem Mutlilayer an jeder Grenzschicht

Röntgenphysik

3) 3

Multilayer 3

- Bragg Reflektion
- Reflektivität hängt von der Dicke der Schichten und den optischen Konstanten ab

Multilayer 4

 Reflektivität unter senkrechtem Einfall eine Mo/Si Multilayerstruktur

Multilayer 5

• • • • • • • • • • • • •

Reflektivität eines Multilayer Spiegels

Measured EUV Spectrum of Xenon

Röntgenphysik

EUV Lithographie 2

EUV Lithographie 3

- Quellen für 13.5 nm Strahlung: Xe Plasma
- Anforderung: >115 W Strahlungsleistung im Bereich 13-14 nm
- Repetitionsrate >10,000 Hz
- Laser Plasma oder Gasentladungsplasma (oder Synchrotron/FEL)

Gasentladungsplasma

- Sogenannte Z-Pinch Entladung
- Problem: Debris der Entladung zerstört die nachfolgende Optik
- Wärmelast in der Entladung
- Für 115 W EUV Leistung werden mehr als 20 kW elektrische Leistung in das Plasma gesteckt !

Gasentladungsplasma

Laserplasma

- Erzeugung eines Strahls oder von Tröpchen aus flüssigem/fest Xenon im Vakuum Super Sonic Beam Expansion
- 1.2 kW Laserleistung bei 10 kHz liefern "nur" 10 W EUV Leistung
- 34 kW Laserleistung werden voraussichtlich benötigt
- Weniger Probleme mit Debris, keine schmelzenden Elektroden

EUV Monochromatoren

- Synchrotron- und Wigglerstrahlung ist kontinuierlich
- Undulator- und FEL Strahlung hat Spektral auch noch eine relativ große Bandbreite $E/\Delta E = N$
- Strahlung muß monochromatisiert werden

5 - 30 eV	Normal incidence Monochromatoren (NIM)
10 eV - 2 keV	Gitter Monochromatoren (SGM, PGM)
> 2 keV	Kristallmonochromatoren

 Es gibt keine dispersiven Medien ⇒ Verwendung von Reflektionsgittern

< 回 > < 回 > < 回 >

Abbildungseigenschaften

Fermat'sches Prinzip

Der optische Weg zwischen zwei Punkten A und B muß ein Extremum annehmen. Optischer Weg $F = \overline{AP} + \overline{PB}$ $P(\xi, \omega, \ell)$: Koordinaten eines Spiegels

$$\frac{\partial F}{\partial y} = 0$$
 und $\frac{\partial F}{\partial z} = 0$

Oberfläche wird durch Polynom beschrieben

$$\begin{aligned} \xi(\omega,\ell) &= \sum_{i=0}^{\infty} \sum_{j=0}^{\infty} a_{ij} \omega^i \ell^j \\ a_{00} &= a_{10} = 0, \qquad j = \text{even} \end{aligned}$$

• • • • • • • • • • • •

Abbildungseigenschaften

Wichtige abbildene Elemente Definiere die Abstände r und r' vom Spiegelzentrum zum Bild und Objektpunkt.

$$r := \overline{AP}$$
 $r' := \overline{PB}$
 $\theta :=$ Winkel zur Flächennormale

- Toroid
- Paraboloid
- Ellipse •

・ 同 ト ・ ヨ ト ・ ヨ ト

Abbildungseigenschaften

Wichtige abbildene Elemente Definiere die Abstände r und r' vom Spiegelzentrum zum Bild und Objektpunkt.

> $r := \overline{AP}$ $r' := \overline{PB}$ $\theta :=$ Winkel zur Flächennormale

Toroid

Zwei verschiedene Radien in *y* und *z* Richtung *R* und ρ . Spezialfall **Sphäre**: $R = \rho$

Meridionaler Fokus
$$\left(\frac{1}{r} + \frac{1}{r'}\right) \frac{\cos \theta}{2} = \frac{1}{R}$$

Sagittaler Fokus $\left(\frac{1}{r} + \frac{1}{r'}\right) \frac{1}{2\cos \theta} = \frac{1}{\rho}$

Abbildungseigenschaften

Wichtige abbildene Elemente Definiere die Abstände r und r' vom Spiegelzentrum zum Bild und Objektpunkt.

$$r := \overline{AP}$$
 $r' := \overline{PB}$
 $\theta :=$ Winkel zur Flächennormale

Paraboloid

$$y^{2} + z^{2} = 4ax$$

$$x_{0} = a \tan^{2} \theta$$

$$y_{0} = 2a \tan \theta$$

A .

Abbildungseigenschaften

Wichtige abbildene Elemente Definiere die Abstände r und r' vom Spiegelzentrum zum Bild und Objektpunkt.

$$r := \overline{AP}$$
 $r' := \overline{PB}$
 $\theta :=$ Winkel zur Flächennormale

Ellipsoid

Abbildungseigenschaften

• Optischer Weg
$$\vec{AO_A} + \vec{O_AO} + \vec{OP}$$

 $\vec{AP} = \begin{pmatrix} 0\\0\\-z \end{pmatrix} + \begin{pmatrix} -r\cos\alpha\\-r\sin\alpha\\0 \end{pmatrix} + \begin{pmatrix} \xi\\\omega\\\ell \end{pmatrix}$
 $\vec{AP} = |\vec{AP}| = \sqrt{(\xi - r\cos\alpha)^2 + (\omega - r\sin\alpha)^2 + (\ell - z)^2}$
 $\vec{BP} = |\vec{BP}| = \sqrt{(\xi - r'\cos\alpha)^2 + (\omega - r'\sin\alpha)^2 + (\ell - z')^2}$

• Zentraler Strahl auf der Optik

$$\left(\frac{\partial F}{\partial \ell}\right)_{\xi=\omega=\ell=0} = 0 \qquad \Rightarrow \qquad \frac{z}{r} = \frac{z'}{r'}$$

 Um *F* allgemein zu berechnen, müssen die Koeffizienten a_{ij} der Reihenentwicklung

 $\infty \infty$

Reihenentwicklung Toroid

• Allgemein:

$$a_{02} = \frac{1}{2\rho} \qquad a_{20} = \frac{1}{2R} \qquad a_{22} = \frac{1}{4R^2\rho}$$
$$a_{04} = \frac{1}{8\rho^3} \qquad a_{40} = \frac{1}{8\rho^3}$$
$$a_{12} = 0 \qquad a_{30} = 0$$

• Spezialfall Sphäre:

$$\rho = R$$

• Spezialfall Planspiegel:

$$R
ightarrow \infty,
ho
ightarrow \infty \Rightarrow a_{ij} = 0$$

Reihenentwicklung Paraboloid

$$\begin{aligned} a_{02} &= \frac{1}{4r'\cos\theta} & a_{20} &= \frac{\cos\theta}{4r'} & a_{22} &= \frac{3\sin^2\theta}{32r'^3\cos\theta} \\ a_{04} &= \frac{\sin^2\theta}{64r'^3\cos^3\theta} & a_{02} &= \frac{5\cos\theta\sin^2\theta}{64r'^3} \\ a_{12} &= -\frac{\tan\theta}{8r'^2} & a_{30} &= -\frac{\sin\theta\cos\theta}{8r'^2} \end{aligned}$$

Reihenentwicklung Ellipsoid

$$a_{02} = \frac{1}{4f\cos\theta} \quad a_{20} = \frac{\cos\theta}{4f} \quad a_{22} = \frac{\sin^2\theta}{16f^3\cos^3\theta \left(1.5\cos^2\theta - \frac{b^2}{a^2}(1-0)\right)}$$
$$a_{04} = a_{40} = a_{12} = a_{30} = mit$$
$$f = \left(\frac{1}{r} + \frac{1}{r'}\right)^{-1}$$

2

イロト イヨト イヨト イヨト

Beugungsgitter

 Identische Behandlung Optischer Weg

$$F = \bar{AP} + \bar{PB} + Nk\lambda\omega$$

mit

- N Liniendichte
- k Beugungsordnung $\pm 1,\pm 2,\ldots$
- λ Wellenlänge des Lichts
- ω Position in der Dispersionsrichtung
- Reihenentwicklung des optischen Weges F

$$\begin{split} F = & F_{000} & +\omega F_{100} + \frac{1}{2} \omega^2 F_{200} + \ell^2 F_{020} + \omega^3 F_{300} \\ & + & \omega \ell^2 F_{120} + \omega^4 F_{400} + \omega^2 \ell^2 F_{220} + \ell F_{040} + \dots \end{split}$$

319

Abbildungseigenschaften

$$\begin{array}{ll} F_{000} = r + r' \\ F_{100} = Nk\lambda - (\sin\alpha + \sin\beta) & \text{Gitter} \\ F_{200} = (\cos^2 \alpha/r) + (\cos^2 \beta/r') - 2a_{20}(\cos\alpha + \cos\beta) & \text{Merid} \\ F_{020} = 1/r + 1/r' - 2a_{02}(\cos\alpha + \cos\beta) & \text{Sagitt} \\ F_{300} = T(r,\alpha)/r\sin\alpha + T(r',\beta)\sin\beta - 2a_{30}(\cos\alpha + \cos\beta) & \text{Prima} \\ F_{120} = S(r,\alpha)/r\sin\alpha + S(r',\beta)\sin\beta - 2a_{12}(\cos\alpha + \cos\beta) & \text{Astigr} \\ & \\ \end{array}$$

$$T(r,\alpha) = (\cos^2 \alpha/r) - 2a_{20} \cos \alpha \quad , \quad S(r,\alpha) = (1/r) - 2a_{02} \cos \alpha$$

- Mit dem Fermat'schen Theorem lassen sich damit dann im Prinzip beliebige Optiken analytisch berechnen und optimieren
- Bei einer Optik mit verschiedenen Komponenten wird das aber sehr schnell, sehr aufwendig !
- Lösung: Ray Tracing Programme

< ロ > < 同 > < 回 > < 回 >

Abbildungseigenschaften

- Mit dem Fermat'schen Theorem lassen sich damit im Prinzip beliebige Optiken analytisch berechnen und optimieren
- Optimieren heißt, dass die höheren Beiträge *F_{klm}* (Abberationen) zu optischen Weg *F* verschwinden
- ⇒ Verwendung von vielen optischen Komponenten in z.B. Kameraobjektiven
 - Bei einer Optik mit verschiedenen Komponten wird dies sehr schnell sehr aufwendig!
 - Ungeeignet für XUV und Röntgenoptiken
 - Lösung: Ray Tracing Programme

Ray Tracing

Abbildung eines Quellpunktes mit drei verschiedenen Spiegeln

 $\vartheta = 85^{\circ}$ zur Spiegelnormalen, r = 10, r' = 1

Sphäre

Toroid

Ellipsoid

Röntgenphysik

Ray Tracing

- Prinzip des Ray Tracing beruht auf der geometrischen Optik
- Berechne den Strahlengang von einer Quelle *S* bis zu einem Bildpunkt *F* für viele unterschiedliche Strahlen

- Strahlen gehen von einer Quellebene ausgehen und treffen auf eine Bildebene.
- Komplizierte Optiken werden berechnet, indem die Bildebene eines optischen Elementes k, als Quellebene des optischen Elementes k + 1 verwendet wird.

Ray Tracing – Shadow

0	SHADOW C	GUI (minorlava)	000	0	SHADOW GI	JI (minorlava)	000
Ble Edit Ban Workspace)	iools (gations		500	Bie Edit Ban Workspace Toole	s <u>Op</u> tions		1940
Exit Load Seve	Edit Source Trace	Run Plot		Exit Load Save E	Edit Source Trace	Run Plot	
Grand Control	Bood File to store the rays Searce Type Humber of Landon rays Wigglet candidation and Judge Days Search Type Search Days Days Days Days Days Days Days Days	Pagend do Pagend do Pagend do Pagend do		Tradition Control Co	MAIN HERA) MAIN HERA Time Main and States may place distance many place distance many place distance many place distance field of the second states for or file of the second states for or file grape factor and states for or file states for or file for or file states for or file for or file states for or file for o	ALL [103 [103] 105 [105] 105 [10	011 12 12 12 12 12 12 12 12 12
Info:: Parameter Editor: Enter	'?' in any field for help	Selection:: Source Edit:: Source		Info:: Parameter Editor: Enter '?'	in any field for help	Selection:: OE 1	Edit:: OE 1
Current directory:: /home/mai	tins/tex/viPhysik des FEL/Data/shado	ow ChDir Cliphoard:: Empty	_	Current directory:: Phomefmartin	is/texi/viPhysik_des_FEL/Data/shadov	v ChDir Cliph	oard:: Empty
	,			L ~ ~	•		
				5			

einer Quelle

eines einzelnen Spiegels

Tangentenfehler

• Was ist die kritische Größe bei der Qualität der optischen Komponenten ?

- Tangentenfehler (slope error) sind Winkelabweichungen von der perfekten Oberfläche
- Winkelfehler f
 ühren zu Fehlern in der Fokusierung und begrenzen die Auflösung von Monochromatoren

Erreichbare Fehler

Fläche	Fehler (RMS)		
Plan, Sphärisch	0.05" - 0.1"		
Zylinder	0.3" - 0.5"		
Elliptisch	0.5" - 1"		

 $1'' \equiv 0.5 \mu m$ Abweichung auf 100 mm Länge 0.05" Meßgrenze !

Röntgenphysik

A B b 4 B b

Tangentenfehler – Beispiel

Gitter: k = 1200 Linien/mm, Beugungsordnung N = 1, $\alpha = 86^{\circ}, \beta = -80^{\circ}$

< 回 > < 三 > < 三 >

Tangentenfehler – Beispiel

Auflösung ohne slope	Auflösung mit slope error
r' = 8 m, Austrittsspalt s	= Tangentenfehler 1" $\Rightarrow \beta' = \beta \pm$
10 μ m	1″
$\Delta \lambda = \frac{1}{kN} \cdot \cos \beta \Delta \beta$ $\Delta \beta \approx \frac{s}{r'}, \Delta \lambda \approx \frac{1240}{E^2}$ $\Rightarrow \Delta E \approx \frac{E^2}{E^2} \cdot \frac{s}{r'} \cdot \frac{\cos \beta}{E^2} = \frac{1}{2}$	$E'_{+} = 112.89287 eV$ $E'_{-} = 112.87797 eV$ $E'_{-} = E'_{+} - E'_{-} = 15 meV$ $E = 2 meV \frac{\Delta E}{E} \approx 7500$
$\Rightarrow \frac{\Delta E}{E} \approx 60000$	

2

イロト イヨト イヨト イヨト

Effektive Tangentenfehler

• Bei der sagittalen Fokusierung wirkt nur ein effektiver Tangentenfehler

• Bei der sagittaler Fokusierung spielt der Tangentenfehler eine kleiner Rolle

 $\alpha = 5^{\circ} \Rightarrow \sin \alpha = 0.09$

• $\sin \alpha$ wird auch als *Forgiveness Faktor* bezeichnet

Forgiveness Faktor

• Einfallender Strahl \vec{k}_0 und Spiegelnormale \vec{n}

 $\vec{k}_0 = (0, k_y, k_z) = k(0, -\sin\theta, \cos\theta)$ $\vec{n} = (0, 1, 0)$

Reflektierter Strahl

$$\vec{k}_0' = \vec{k}_0 - 2(\vec{k}_0 \cdot \vec{n})\vec{n}$$

• Tangentenfehler α entspricht einem gedrehten Spiegel mit der Normalen

$$\vec{n}' = (\sin \alpha, \cos \alpha, 0)$$

$$\vec{k}_{0}' = k \begin{pmatrix} 0 \\ -\sin\theta \\ \cos\theta \end{pmatrix} - 2 \begin{bmatrix} 0 \\ -\sin\theta \\ \cos\theta \end{pmatrix} \cdot k \begin{pmatrix} \sin\alpha \\ \cos\alpha \\ 0 \end{bmatrix} \begin{bmatrix} \sin\alpha \\ \cos\alpha \\ 0 \end{bmatrix}$$

Forgiveness Faktor

 \Rightarrow

$$\vec{k}'_{0} = k \begin{bmatrix} 0 \\ -\sin\theta \\ \cos\theta \end{bmatrix} - 2(-\sin\theta\cos\alpha) \begin{pmatrix} \sin\alpha \\ \cos\alpha \\ 0 \end{bmatrix} \\ = k \begin{pmatrix} \sin\theta\sin2\alpha \\ \sin\theta\cos2\alpha \\ \cos\theta \end{bmatrix}$$

 Die Projektion des reflektierten Strahls auf die xz-Ebene schließt mit der z-Achse einen Winkel φ ein

Forgiveness Faktor

• Ablenkwinkel aus der yz-Ebene heraus ψ – Wirkung des Tangentenfehlers

$$\sin\psi = \frac{k_x}{k} = \frac{k\sin\theta\sin 2\alpha}{k} = \frac{\sin\theta}{k}\sin 2\alpha$$

Die Wirkung des Tangentenfehlers wird somit um den Faktor $\sin \theta$ verkleinert.

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

EUV Monochromatoren

- Synchrotron- und Wigglerstrahlung ist kontinuierlich
- Undulator- und FEL Strahlung hat Spektral auch noch eine relativ große Bandbreite $E/\Delta E = N$
- Strahlung muß monochromatisiert werden

5 - 30 eV	Normal incidence Monochromatoren (NIM)
10 eV - 2 keV	Gitter Monochromatoren (SGM, PGM)
> 2 keV	Kristallmonochromatoren

 Es gibt keine dispersiven Medien ⇒ Verwendung von Reflektionsgittern

< 回 > < 回 > < 回 >

Normal Incidence Monochromatoren (NIM)

- Sinnvoll im Energiebereich bis ca. 35 eV
- Vorteil: Sehr einfacher Aufbau mit einem sphärischen Gitter, das Quelle (Eintrittsspalt) auf den Austrittsspalt abbildet

- Welche Bedingungen müssen erfüllt sein, für eine optimale Performance des NIM ? Idealerweise *F_{ijk}* = 0 für alle α, β, *r*, *r*'
- Läßt sich leider nicht realisieren

Normal Incidence Monochromatoren (NIM)

• Es muß F₂₀₀ minimiert werden. Für ein sphärisches Gitter gilt

$$F_{200} = \left(\frac{\cos^2 \alpha}{r} - \frac{\cos \alpha}{R}\right) + \left(\frac{\cos^2 \beta}{r'} - \frac{\cos \beta}{R}\right)$$

NIM: $r = r'$
$$\Rightarrow \quad r = \frac{1}{R} \cdot \frac{\cos \alpha + \cos \beta}{\cos^2 \alpha + \cos^2 \beta}$$

 $NK\lambda = \sin \alpha + \sin \beta$

 Für einen optimalen Fokus müssen also r, α und β variiert werden

Grazing Incidence Monochromatoren

- Im wesentlichen zwei Typen
 - Sphärischer Gitter Monochromator (SGM)
 - Plan-Gitter Monochromator (PGM)
- Einfacher SGM ist der "Dragon" Monochromator

Aufbau ähnlich dem NIM, aber streifender Einfall

- Um zu fokusieren ($F_{200} = 0$) müssen *r* oder *r'* verändert werden
- ⇒ Komplizierter Aufbau, der adaptive Spiegel vor oder hinter dem Monochromator erforderlich macht.
 - Coma Term F_{300} verschwindet nicht für jede Wellenlänge λ
 - Typische Parameter

$$R = 10 - 50$$
 m, $r = 1 - 3$ m, $r' = 5 - 10$ m

Rowland Bedingung

• Abberationen von sphärischen Optiken

$$F_{020} = \frac{1}{r} + \frac{1}{r'} - \frac{1}{R} (\cos \alpha + \cos \beta)$$

$$F_{200} = \left(\frac{\cos^2 \alpha}{r} - \frac{\cos \alpha}{R}\right) + \left(\frac{\cos^2 \beta}{r'} - \frac{\cos \beta}{R}\right) \quad \text{Defokusierung}$$

$$F_{300} = \left(\frac{\cos^2 \alpha}{r} - \frac{\cos \alpha}{R}\right) \frac{\sin \alpha}{r} + \left(\frac{\cos^2 \beta}{r'} - \frac{\cos \beta}{R}\right) \frac{\sin \beta}{r'} \quad \text{Correction}$$

enthalten jeweils

$$\left(\frac{\cos^2\alpha}{r}-\frac{\cos\alpha}{R}\right).$$

Wähle

 $r = R \cos \alpha$ und $r' = R \cos \beta \Rightarrow F_{200} = 0$ und $F_{300} = 0$

Sowohl der Defokusierungsterm als auch der Coma Term verschwinden

Rowland Kreis Monochromator

- Bewegung des Austrittsspalt auf dem Rowlandkreis
- Schwer zu realisieren bei einem Monochromator an einem Speicherring
- Kleinere Monochromatoren werden zur Spektroskopie eingesetzt R' kann bis zu 0.5-1 m groß werden.

A (1) > A (2) > A

Fix Fokus SGM (FSGM)

- Wie kann das Problem umgangen werden, dass r, r' variieren müssen ?
- Verwende eine zweiten Spiegel, um einen beliebigen Einfallswinkel α am Gitter zu realisieren.
- Spiegel muß so gedreht werden, daß der Strahl immer auf die gleiche Stelle des Gitter trifft.

 Zur Minimierung des Coma Terms F₃₀₀ kann jetzt noch zusätzlich die gesamte Spiegel-Gitter Kombination verschoben werden, so daß r und r' angepaßt werden können, wobei r + r' = const ist. Mechanisch sehr aufwendig !

Plan-Gitter Monochromatoren (PGM)

Auch ein planes Gitter besitzt fokusierenden Eigenschaften

$$F_{200} = \left(\frac{\cos^2 \alpha}{r} - \frac{\cos \alpha}{R}\right) + \left(\frac{\cos^2 \beta}{r'} - \frac{\cos \beta}{R}\right)$$
$$= \frac{\cos^2 \alpha}{r} + \frac{\cos^2 \beta}{r'} \text{ mit } R \to \infty$$

*F*₂₀₀ verschwindet, wenn [H. Petersen, Opt. Commun. **40**, 402 (1982)]

$$\frac{r'}{r} = -\left(\frac{\cos\beta}{\cos\alpha}\right)^2 = -c_{\rm ff}^2 = const.$$

 SX700 Design (Petersen Monochromator) realisiert diese Bedingung

Plan-Gitter Monochromatoren (PGM)

э

・ロト ・ 四ト ・ ヨト ・ ヨト

Plan-Gitter Monochromatoren (PGM)

Auch ein planes Gitter besitzt fokusierenden Eigenschaften

$$F_{200} = \left(\frac{\cos^2 \alpha}{r} - \frac{\cos \alpha}{R}\right) + \left(\frac{\cos^2 \beta}{r'} - \frac{\cos \beta}{R}\right)$$
$$= \frac{\cos^2 \alpha}{r} + \frac{\cos^2 \beta}{r'} \text{ mit } R \to \infty$$

*F*₂₀₀ verschwindet, wenn [H. Petersen, Opt. Commun. **40**, 402 (1982)]

$$\frac{r'}{r} = -\left(\frac{\cos\beta}{\cos\alpha}\right)^2 = -c_{\rm ff}^2 = const.$$

- SX700 Design (Petersen Monochromator) realisiert dies
- Realisierung mit einem elliptischen Spiegel Monochromator benötigt keinen Eintrittsspalt

• Problem !

PGM

- Ellipsoid verringert die erreichbare Auflösung deutlich
- Neues Design mit kollimiertem Licht
 R. Follath und F. Senf, Nucl. Instrum. Methods A390, 388 (1997)

- Ausnutzen der sagittalen Fokusieren mit zwei Zylinderspiegeln
- Zylinderspiegel 1 parallelisiert das Licht in der Dispersionrichtung $r \to \infty$
- Zylinderspiegel 2 fokussiert sagittal auf den Austrittsspalt
- *c*_{ff} kann frei variiert werden
- Höhere Auflösung kann erreicht werden, da bei großem c_{ff} die effektive Quelle verkleinert wird, und die Dispersion vergrößert wird

Kristallmonochromatoren

- Für Photonenenergien > 2 keV läßt die Effizienz von Gittermonochromatoren sehr schnell nach.
- Photonenenergie $\hbar\omega = 2 \text{ keV} \equiv 6.2 \text{\AA}$ Wellenlänge
- Wellenlänge kommt in die Größenordnung der Gitterabstände im Kristall !
- Guter Einkristall (z.B. Si) besitzt ein quasi perfektes Gitter, an dem Beugung und damit dann die Monochromatisierung stattfindet

- Bei Doppel-Kristall-Monochromatoren (DCM) werden zwei Kristall hineinander geschaltet
- Höhere Auflösung und Strahl hat nach dem DCM wieder die gleiche Richtung