

Surface Sensitive X-ray Scattering

Oliver H. Seeck

Hasylab, DESY

Introduction

- Concepts of surfaces
- Scattering (Born approximation)

Crystal Truncation Rods

- The basic idea
- How to calculate
- Examples

Reflectivity

- In Born approximation
- Exact formalism (Fresnel)
- Examples

Grazing Incidence Diffraction

- The basic idea
- Penetration depth
- Example

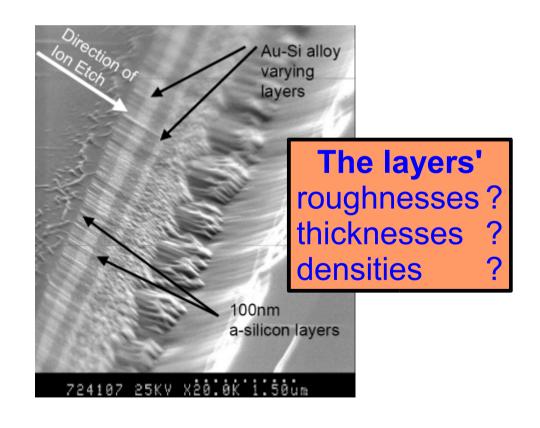
With x-ray and neutron reflectivity surfaces, buried interfaces and the properties of thin film systems can be investigated on a micro- and nanoscale.

Fundamental science, e.g.:

- layer growth
- roughness evolution

Industrial applications, e.g.:

- semiconductor devices
- storage devices / harddisks
- coatings
- lubricants
- catalysts

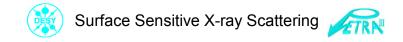


Advantages of x-ray and neutron reflectometry:

- Resolution in the A-regime
- Gives a lot of information with just one measurement
- Usually non-destructive
- Highly element specific
- No special preparation of the sample
- (Averaged information over whole sample area)

Disadvantages of x-ray and neutron reflectometry:

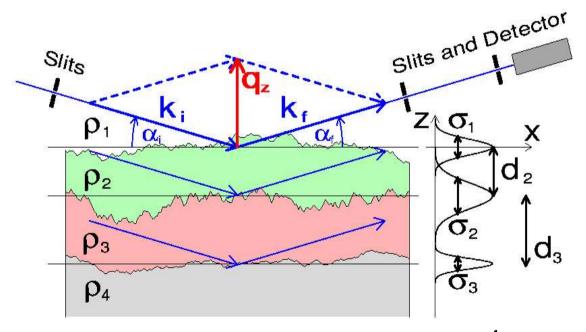
- No unique results without preknowledge
- No fast results
- Interpretation/analysis often not easy
- (No local information)



Theoretical Part

a) General Considerations

Photons with wavelength λ (or neutrons with $\lambda = hI\sqrt{2}\,mE$) are scattered elastically (no energy change: $\lambda_i = \lambda_f$) at the surface. The incident angle α_i equals the exit angle α_f .

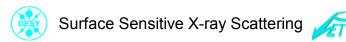


The density ρ_i means:

- Electron density for x-rays
- Scattering length density for neutrons

Wave vector transfer

$$q_z = \frac{4\pi}{\lambda} \sin(\alpha_f) = 2k_0 \sin(\alpha_f)$$

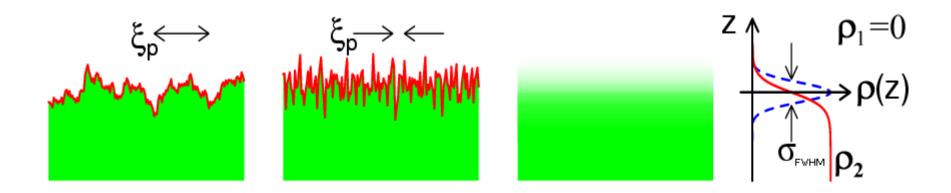


Slits and Detector ρ_1 ρ_2 ρ_3 ρ_4 ρ_4

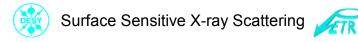
q_z is perpendicular to the surface

only sensitive to information perpendicular to the surface : electron (scattering length) density profile $\langle \rho(x,y,z) \rangle_{(x,y)} = \rho(z)$.

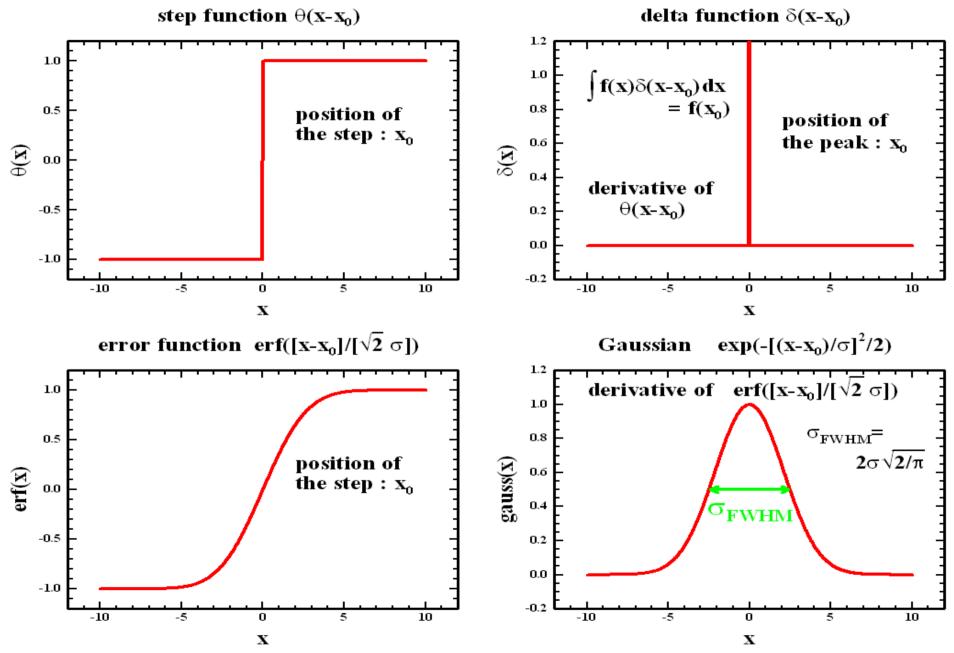
That means: a reflectivity cannot distinguish different in-plane structures.



These different surfaces have the same reflectivity!



The following functions are important in the following:



Specularly Reflected Intensity in Born Approximation $(I_{scatt} << I_0)$

$$I(q_z) \propto \frac{1}{q_z^4} \left| \int \frac{d\rho(z)}{dz} \exp(iq_z z) dz \right|^2$$

Given by the absolute square of the Fouriertransformation of the derivative of the density/(scattering length) profile and divided by q_z^4 .

Consequences:

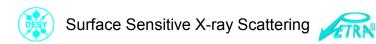
• Reflected intensity drops fast with increasing angle : $1/q_z^4$

Only differences in density can be seen (contrast) : Derivative

• Only sensitive to density properties in z-direction : Density profile

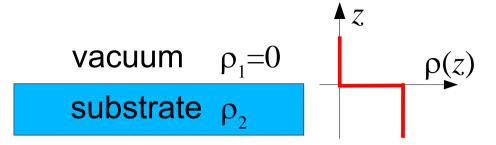
No direct picture visible : Fourier space

Phase information gets lost ⇒ no unique solution : Absolute square



Examples

1) single smooth surface at z = 0

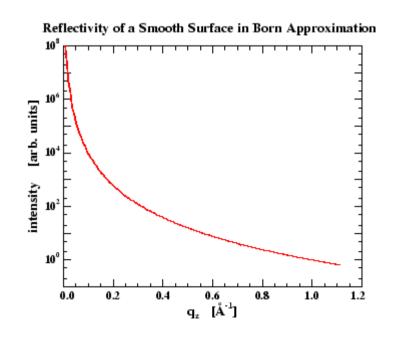


Density profile:
$$\rho(z) = \frac{\rho_2}{2} (1 - \Theta[z]) \Rightarrow \frac{d\rho}{dz} \propto \delta(z)$$

$$I(q_z) \propto \frac{1}{q_z^4} \left| \int \frac{d\rho(z)}{dz} \exp(iq_z z) dz \right|^2$$

$$= \frac{1}{q_z^4} \left| \int \delta(z) \exp(iq_z z) dz \right|^2$$

$$= \frac{1}{q_z^4} \left| \exp(iq_z \cdot 0) \right|^2 = \frac{1}{q_z^4} \cdot |1|^2 = \frac{1}{q_z^4}$$



2) single smooth surface at $z = z_1$ (shifted)

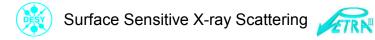
vacuum
$$\rho_1=0$$

$$\rho(z)$$
substrate ρ_2

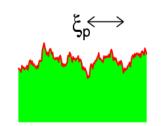
Density profile:
$$\rho(z) = \frac{\rho_2}{2} (1 - \Theta[z - z_1]) \Rightarrow \frac{d\rho}{dz} \propto \delta(z - z_1)$$

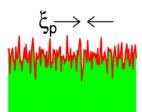
$$\begin{split} I(q_z) &\propto \frac{1}{q_z^4} \left| \int \frac{d\rho(z)}{dz} \exp(iq_z z) dz \right|^2 = \frac{1}{q_z^4} \left| \int \delta(z - z_1) \exp(iq_z z) dz \right|^2 \\ &= \frac{1}{q_z^4} \left| \exp(iq_z z_1) \right|^2 = \frac{1}{q_z^4} \cdot 1^2 = \frac{1}{q_z^4} \end{split}$$

A shift of the sample does not change the reflectivity.



3) single rough surface with roughness







Density profile:
$$\rho(z) = \frac{\rho_2}{2} \left[1 - \text{erf}\left(\frac{z}{\sqrt{2}\sigma}\right) \right] \Rightarrow \frac{d\rho}{dz} \propto \exp\left(\frac{-z^2}{2\sigma^2}\right)$$

$$I(q_z) \propto \frac{1}{q_z^4} \left| \int \frac{d\rho(z)}{dz} \exp(iq_z z) dz \right|^2$$

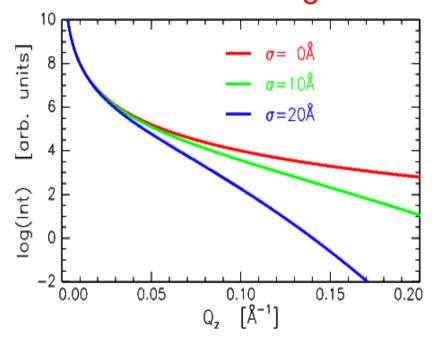
$$= \frac{1}{q_z^4} \left| \int \exp\left(\frac{-z^2}{2\sigma^2}\right) \exp(iq_z z) dz \right|^2$$

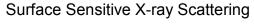
Fourier transformation is known!

$$\propto \frac{1}{q_z^4} \left| \exp\left(\frac{-q_z^2 \sigma^2}{2}\right) \right|^2 = \frac{1}{q_z^4} \exp\left(-q_z^2 \sigma^2\right)$$

Debye-Waller factor

Effect of the roughness





4) single smooth layer with thickness d

vacuum
$$\rho_1=0$$
layer ρ_2
substrate ρ_3

$$\rho(z) = \frac{\Delta \rho_1}{2} \left[1 - \Theta(z) \right] + \frac{\Delta \rho_2}{2} \left[1 - \Theta(z + d) \right]$$

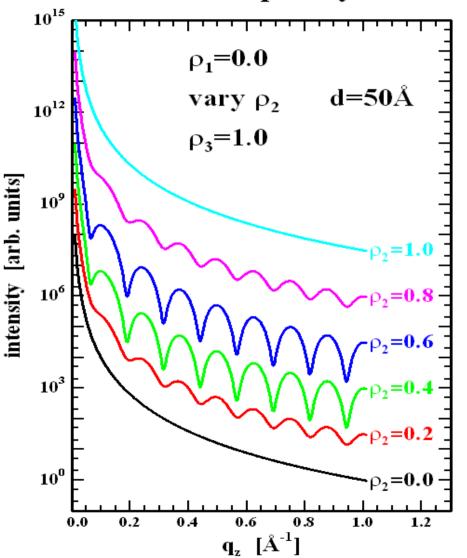
Derivative of
$$\rho(z)$$
:

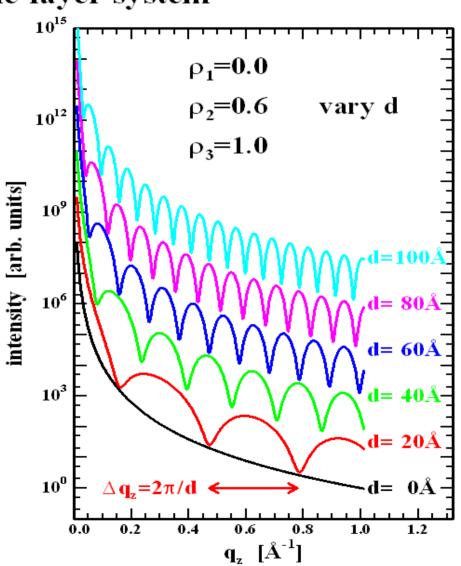
Derivative of
$$\rho(z)$$
: $\frac{d\rho}{dz} \propto \Delta \rho_1 \delta(z) + \Delta \rho_2 \cdot \delta(z+d)$ with: $\frac{\Delta \rho_1 = \rho_2 - \rho_1}{\Delta \rho_2 = \rho_3 - \rho_2}$

$$\begin{split} &I(q_z) \propto \frac{1}{q_z^4} \bigg| \int \frac{d \, \rho(z)}{dz} \exp(iq_z z) dz \bigg|^2 = \frac{1}{q_z^4} \bigg| \int \left[\Delta \, \rho_1 \delta(z) + \Delta \, \rho_2 \delta(z + d) \right] \exp(iq_z z) dz \bigg|^2 \\ &= \frac{1}{q_z^4} \bigg| \Delta \, \rho_1 + \Delta \, \rho_2 \exp(-iq_z d) \bigg|^2 = \frac{1}{q_z^4} \big[\Delta \, \rho_1 + \Delta \, \rho_2 \exp(iq_z d) \big] \cdot \big[\Delta \, \rho_1 + \Delta \, \rho_2 \exp(-iq_z d) \big] \\ &= \frac{1}{q_z^4} \big(\Delta \, \rho_1^2 + \Delta \, \rho_2^2 + \Delta \, \rho_1 \Delta \, \rho_2 \big[\exp(iq_z d) + \exp(-iq_z d) \big] \big) \\ &= \frac{1}{q_z^4} \big[\Delta \, \rho_1^2 + \Delta \, \rho_2^2 + \frac{2 \Delta \, \rho_1 \Delta \, \rho_2 \cos(q_z d) \big] \end{split} \qquad \text{oscillating function}$$

- Contrasts $\Delta \rho_1$ and $\Delta \rho_2$ determine the visibility of the oscillations.
- Film thickness d determines the period via $\Delta q_z = 2\pi/d$.

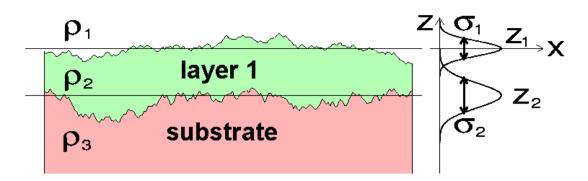
completely smooth one-layer system







5) single layer with rough interfaces and thickness $d = -z_2$



$$\rho(z) = \frac{\Delta \rho_1}{2} \left[1 - \operatorname{erf}\left(\frac{z - z_1}{\sqrt{2}\sigma_1}\right) \right] + \frac{\Delta \rho_2}{2} \left[1 - \operatorname{erf}\left(\frac{z - z_2}{\sqrt{2}\sigma_2}\right) \right]$$

Derivative of
$$\rho(z)$$
:

Derivative of
$$\rho(z)$$
:
$$\frac{d\rho}{dz} \propto \frac{\Delta \rho_1}{\sigma_1} \exp\left(\frac{-(z-z_1)^2}{2\sigma_1^2}\right) + \frac{\Delta \rho_2}{\sigma_2} \exp\left(\frac{-(z-z_2)^2}{2\sigma_2^2}\right)$$

$$\int \exp\left(\frac{-(z-z_1)^2}{2\sigma_1^2}\right) \exp(iq_z z) dz = \exp(iq_z z_1) \sqrt{2} \sigma_1 \exp\left(\frac{q_z^2 \sigma_1^2}{2}\right)$$

Result:
$$I(q_z) \propto \frac{1}{q_z^4} \left[\Delta \rho_1^2 \exp(-q_z^2 \sigma_1^2) + \Delta \rho_2^2 \exp(-q_z^2 \sigma_2^2) \right]$$

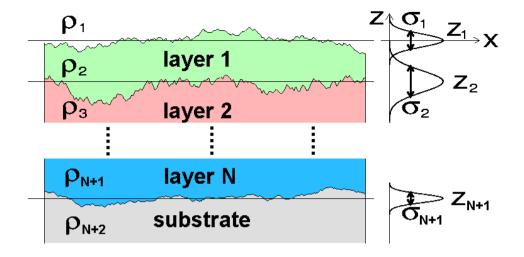
$$+2\Delta\rho_1\Delta\rho_2\exp\left(-q_z^2\frac{\sigma_1^2+\sigma_2^2}{2}\right)\cos(q_zz_2)$$

- At large q_z the scattering is dominated by the smoothest interface.
- The difference between the σ 's of a layer determines the "die-out" of the oscillations.

one layer system with rough interfaces



5) general case: N rough layers



Density profile:
$$\rho(z) = \frac{1}{2} \sum_{j=1}^{N+1} \Delta \rho_j \left(1 - \text{erf} \left[\frac{z - z_j}{\sqrt{2} \sigma_j} \right] \right) \text{ with } \Delta \rho_j = \rho_{j+1} - \rho_j$$

$$I(q_z) \propto \frac{1}{q_z^4} \left(\sum_{j=1}^{N+1} \Delta \rho_j^2 \exp(-q_z^2 \sigma_j^2) \right)$$

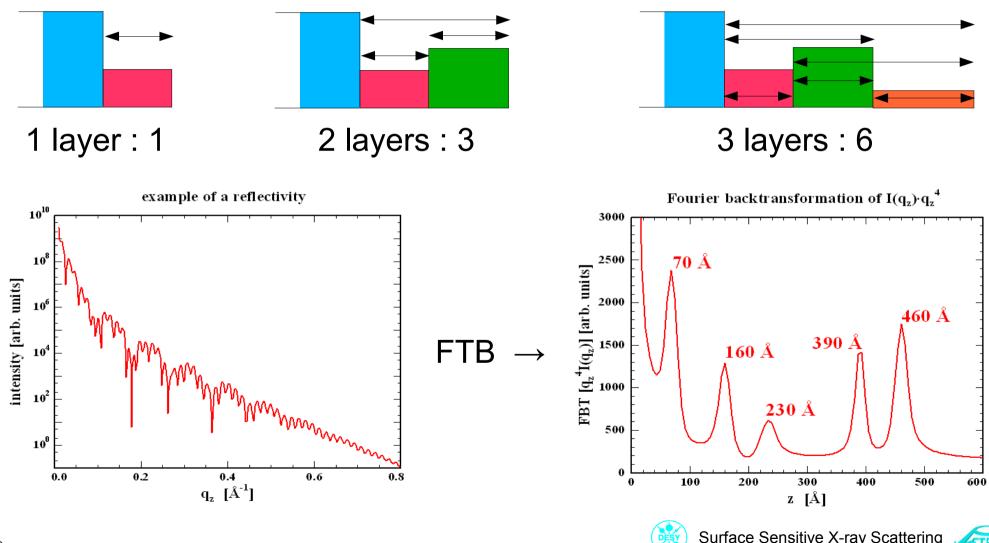
Scattering terms from the single interfaces

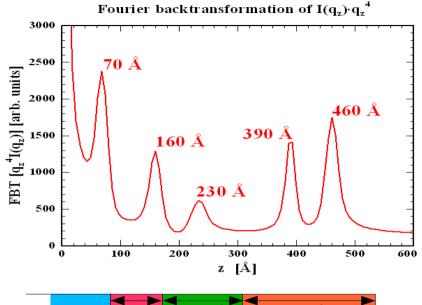
$$+2\sum_{j=1}^{N}\sum_{k=j+1}^{N+1} \Delta \rho_j \Delta \rho_k \exp\left(-q_z^2 \frac{\sigma_j^2 + \sigma_k^2}{2}\right) \cos\left[q_z(z_j - z_k)\right]$$

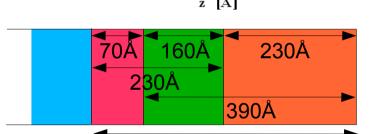
Each distance z_i - z_k gives an oscillating term, scaled with the respective Debye-Waller factor and the contrasts at the interfaces.

For a first guess on reflectivity data: Fourier backtransformation of $q_{z}^{4} \cdot I(q_{z})$ will show distinct peaks for each oscillation (\Leftrightarrow distance).

Maximum number of distances





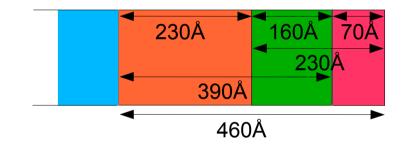


460Å

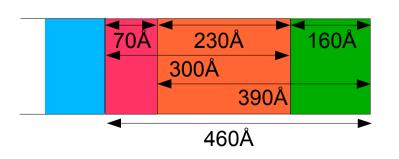
Only 5 peaks!

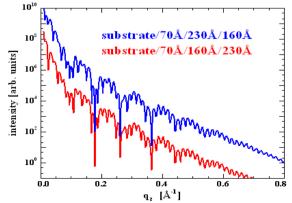
Likely a 3-layer system with one layer thickness matching the sum of two neighboring layers.

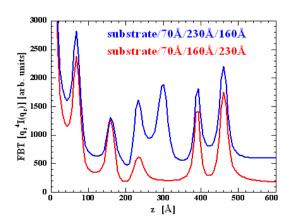
Two possibilities:



Result of swapping layers







c) The Exact Fresnel Formalism (Optical Treatment)

Born approximation diverges for $q_z \rightarrow 0$ \Rightarrow

The reflected intensity cannot be larger than the incident intensity. Multiple scattering for small angles have to be taken into account.

Starting point: Helmholtz equation

(remember: neutrons can be treated as waves)

$$\nabla^2 E(r) + k_0^2 n^2(r) E(r) = 0$$

r : vector in space

E : electrical field for photons / wave function for neutrons

 $k_o = 2\pi/\lambda$: modulus of the wave vector

n : refractive index for reflectivity : n(r) = n(z)

Electron density (for x-rays) or scattering length density (neutrons) translates to the refractive index:

$$n(z) = 1 - \delta(z) + i\beta(z)$$

with the dispersion δ and the absorption β .

X-rays:

$$\delta(z) = \frac{\lambda^2}{2\pi} r_e \rho(z) \frac{f_0(q_z) + f_{\Re}(\lambda)}{Z}$$

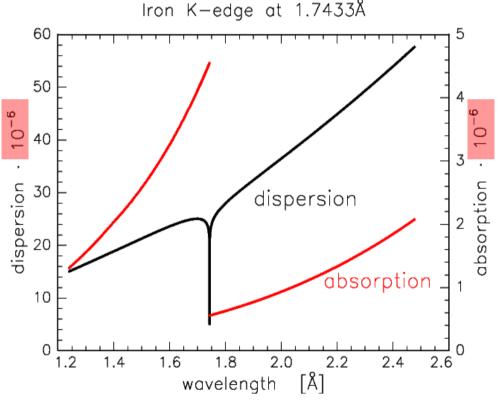
$$\beta(z) = \frac{\lambda^2}{2\pi} r_e \rho(z) \frac{f_{\mathfrak{J}}(\lambda)}{Z}$$

 r_{ρ} : classical e⁻ radius ρ : e⁻ density

Z: number of e

 f_o : formfactor

 $f_{\Re} + i f_{\Im}$: corrections to formfactor



Neutrons:

$$\delta(z) = \frac{\lambda^2}{2\pi} N(z)b \qquad \begin{array}{c} \beta & \text{is usually negligible} \\ N & \text{: particle density} \\ b & \text{: coefforting length} \end{array}$$

: scattering length

Surface Sensitive X-ray Scattering

Mean value of the refractive index:

- *n*<1
- ⇒ total external reflection
- \Rightarrow critical angle α_c

Fresnel reflection coefficient for a single smooth surface:

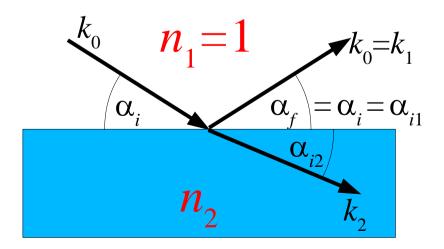
$$r_{1,2} = \frac{k_{z1} - k_{z2}}{k_{z1} + k_{z2}}$$

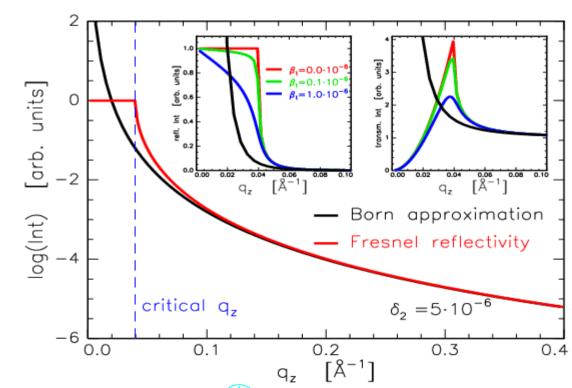
with

$$k_{z1} = k_1 \sin \alpha_{i1} = k_0 \sin \alpha_i = q_z/2$$

 $k_{z2} = k_2 \sin \alpha_{i2} = k_0 \sqrt{n_2^2 - \cos^2 \alpha_i}$

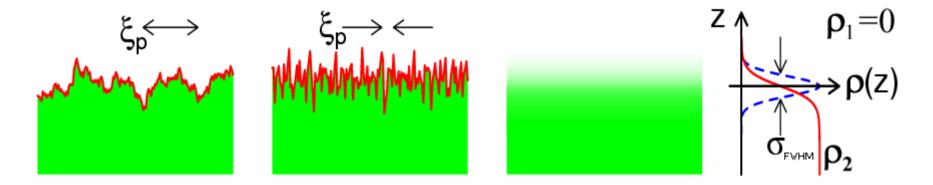
$$I(\alpha_i) = |r_{1,2}|^2$$





If a surface is rough, the Fresnel reflection coefficient can be modified.

The result depends on the exact probability function of the interface.



Solids : Error-function profile \Rightarrow Gaussian probability function

Polymers : tanh-function profile $\Rightarrow 1/cosh^2$ probability function

$$\tilde{r}_{1,2} = r_{1,2} \exp(-2k_{z1}k_{z2}\sigma^2)$$

Gaussian

$$\tilde{r}_{1,2} = \frac{\sinh[\sqrt{3}\,\sigma(k_{z1} - k_{z2})]}{\sinh[\sqrt{3}\,\sigma(k_{z1} + k_{z2})]}$$

 $1/\cosh^2$

Smooth layer systems (recursive formalism by Parratt)

for each interface *j*:

$$r_{j,j+1} = \frac{k_{z,j} - k_{z,j+1}}{k_{z,j} + k_{z,j+1}}$$

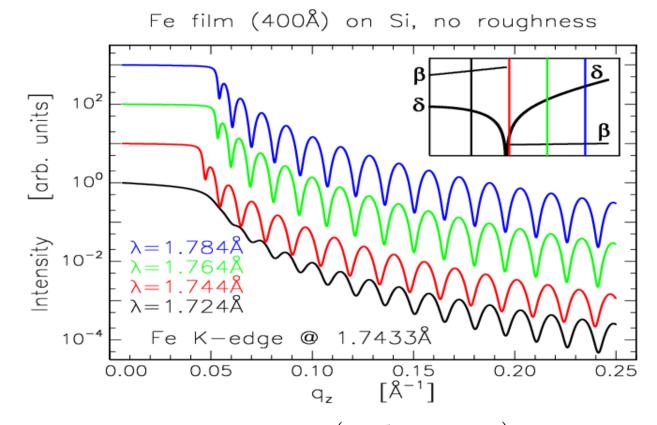
$$k_{z,j} = k_0 \sqrt{n_j^2 - \cos^2 \alpha_i}$$

Recursion:

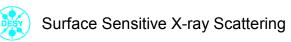
starting with $X_{N+1} = 0$ (N: number of layers)

end of recursion:

$$|X_1|^2 = I(q_z)$$



$$X_{j} = \exp(-2ik_{z,j}z_{j}) \frac{r_{j,j+1} + X_{j+1} \exp(2ik_{z,j+1}z_{j})}{1 + r_{j,j+1}X_{j+1} \exp(2ik_{z,j+1}z_{j})}$$

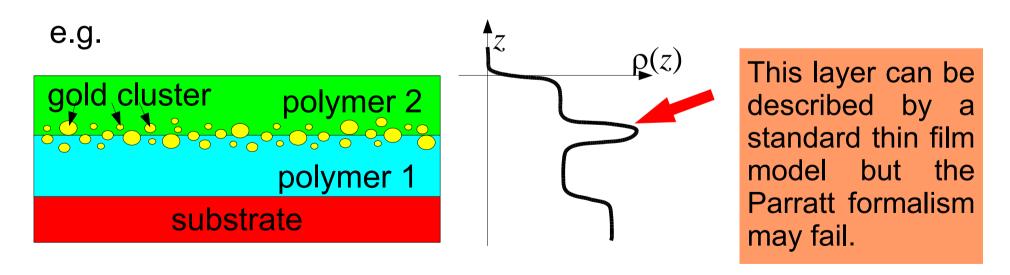


For rough layer systems the $r_{j,j+1}$ can be replaced by the $\tilde{r}_{j,j+1}$

$$\tilde{X}_{j} = \exp\left(-2ik_{z,j}z_{j}\right) \frac{\tilde{r}_{j,j+1} + X_{j+1} \exp\left(2ik_{z,j+1}z_{j}\right)}{1 + \tilde{r}_{j,j+1} X_{j+1} \exp\left(2ik_{z,j+1}z_{j}\right)}$$

However, this is only an approximation.

It fails for thin layers with large roughness.



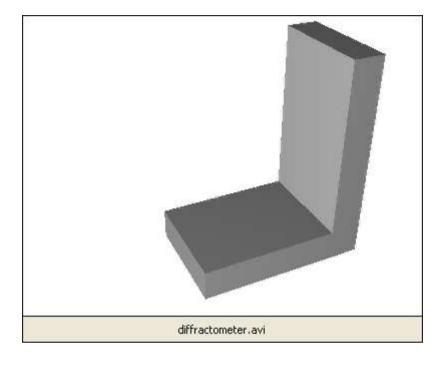
There is a way to get around this problem (see later).

Experimental part

1) The diffractometer

Has many degrees of freedom with high accuracy (0.001° angular resolution / 0.01mm translational resolution).

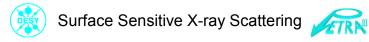
Many slits are necessary to define the beam direction (not discussed here).



Degrees of freedom

- 20 : Detector rotation
- ω : Sample rotation (incident angle)
- χ : 1. Euler angle
 (align surface parallel)
- φ : 2. Euler angle (not used for reflectivity)

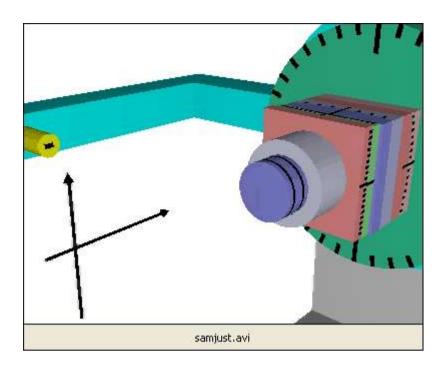
- y : Sample movement up↔down
- x : Sample movement along the beam
- z : Sample movement horizontally
- gy : Goniometer movement up↔down



2) Alignment of the sample

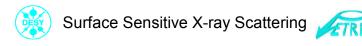
Goal

Put the center of the sample surface to center of rotation (marked by the beam after centering the diffractometer).



Procedure

- 1) Scan the primary beam without the sample. Note the intensity I_0 and the width σ and go with 2θ to the maximum. Calibrate this to 0.
- 2) Scan the sample in y-direction. Move y so that the sample cuts half of the beam.
- 3) Scan ω . Find the maximum, go there and calibrate to 0.
- 4) Redo step 2).
- 5) The ω -scan may not look symmetric. Move the sample in x-direction until it is.
- 6) Go to some ω – 2θ value (e.g. ω =1°, 2θ =2°), scan ω and go to the maximum. Calibrate this as 2θ /2. This is much more accurate than step 3).
- 7) If the width of 6) is **not** $\sigma/2$ the sample is bent and has to be cut in smaller pieces!
- 8) Scan χ widely and go to the maximum to make the surface parallel to the beam.

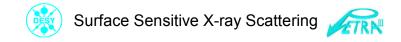


Techniques for refinement

1) Standard technique

- Take the data and have a qualitative look at it.
- Parametrize a density profile by film thickness, averaged film densities and interface roughnesses which may match the data.
 So create a model of the system.
- Take into account all external parameters (resolution of the diffractometer, background, size of the beam, size of the sample) and include them into the model.
- Take a reasonable assumption on the parameters which may match the sample conditions best (preknowledge) and calculate a reflectivity using the Parratt formalism with modified Fresnel reflection coefficients.
- Optimize χ^2 under the constraint of physical reasonability.

$$\chi^2 = \sum_{j=1}^{M} (I_{j, \text{Data}}(q_z) - I_{j, \text{Model}}(q_z))^2$$
 with M data points

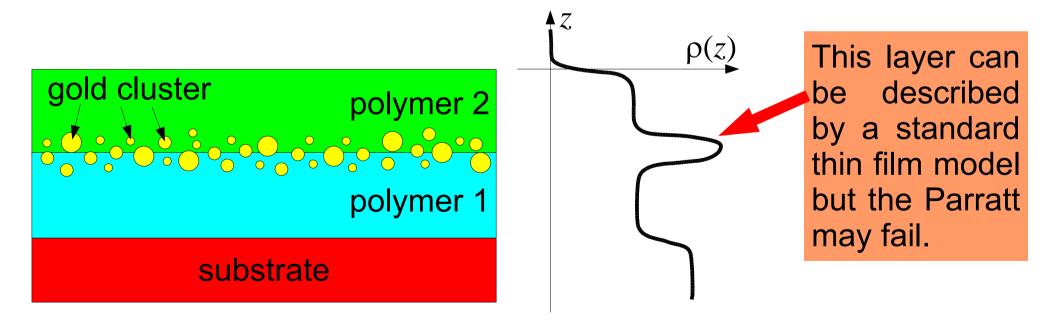


2) Effective density model

The standard technique usually works well. It fails if the system contains thin layers with roughnesses equal or larger than the film thickness (incomplete layers).

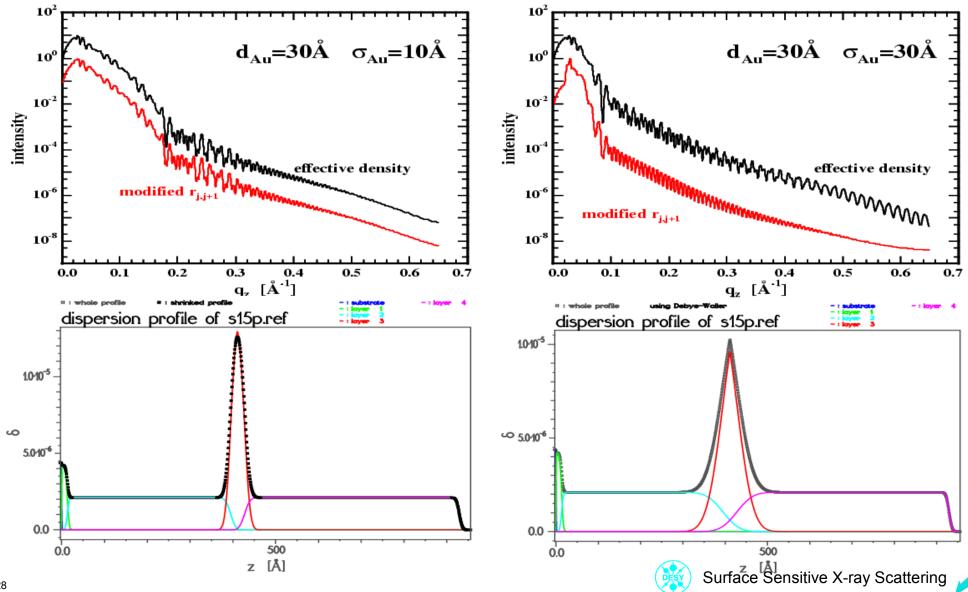
Reason: Interfaces cannot be treated separately any more.

Example: Thin (30Å) gold layers embedded in polymer matrices

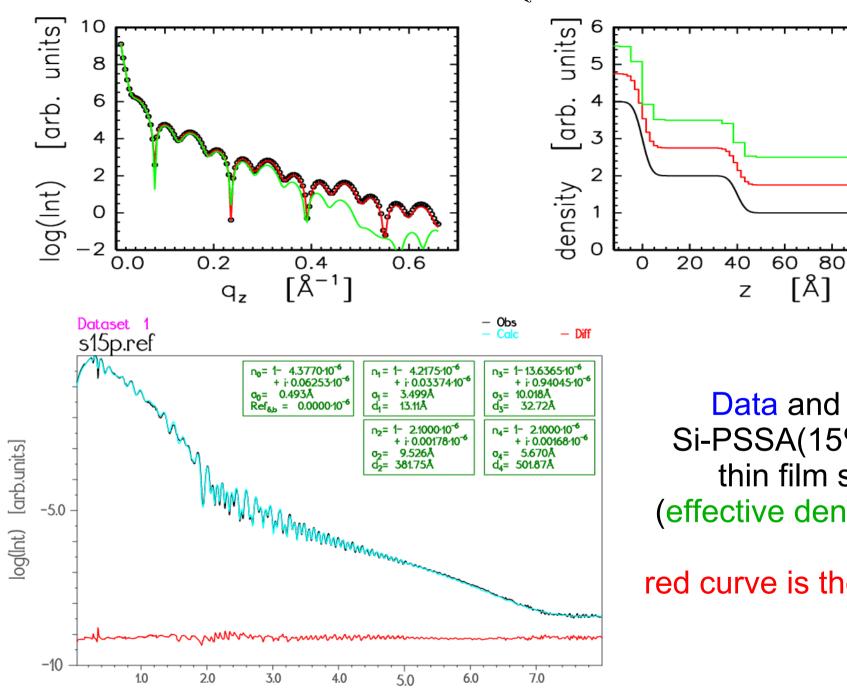


Reflectivity can be calculated by the effective density model.

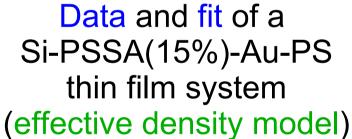
- 1) calculating the whole density profile first
- 2) slicing into many very thin completely smooth sublayers
- 3) using this slicing for the iterative Parratt algorithm (slow!)



The slicing has to be adapted to th q_z -range which has been covered.



[deg]



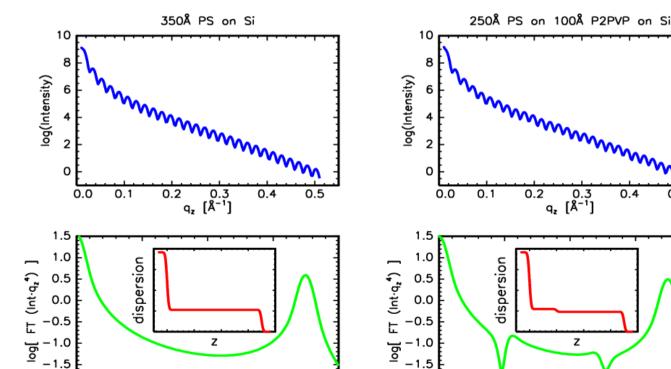
100 120

red curve is the difference

3) The Fourier method

To increase the sensitivity to low contrast interfaces: Include the Fourier backtransformation of $I(q_z)$ (Patterson function P(z)) to the refinement.

$$P(z) = \left| \int_{q_{z,low}}^{\infty} q_z^4 I(q_z) \cos(q_z z) dq_z \right|^2 \implies I(q_z) \propto \frac{1}{q_z^4} \left| \int \frac{d\rho(z)}{dz} \exp(iq_z z) dz \right|^2$$



-2.0

Position of the peaks/dips

Layer thickness

Shape+intensity

Probability function of the interface

z

200

z [Å]

300

100

-2.0

100

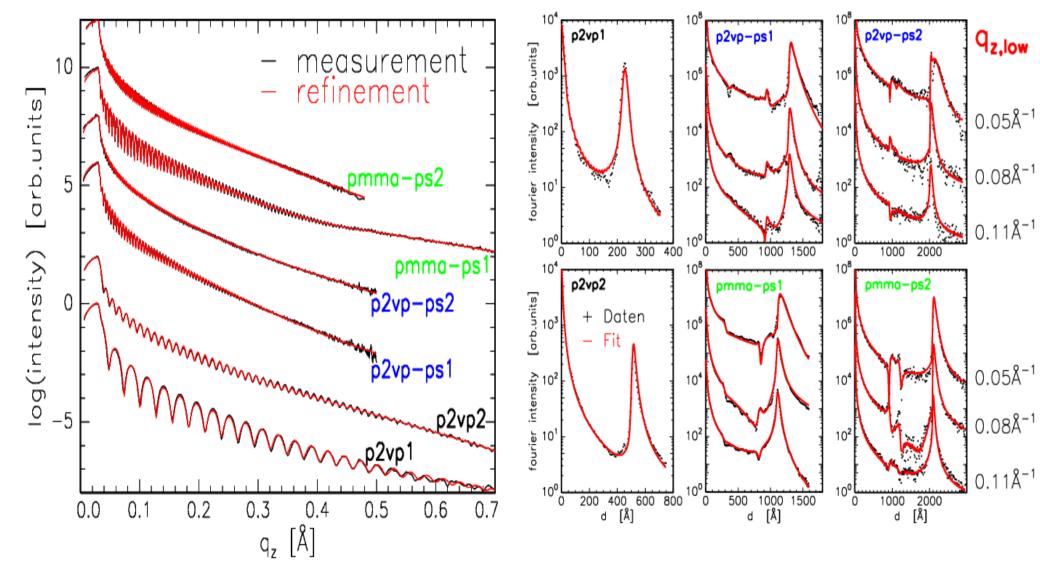
200

z [Å]

300

Polymer Mono- and Bilayers @ 11keV

$$\delta_{_{\!Si}}\!\!=\!\!4.03\cdot 10^{_{\!-6}} \ / \ \delta_{_{\!PS}}\!\!=\!\!1.92\cdot 10^{_{\!-6}} \ / \ \delta_{_{\!P2VPP}}\!\!=\!\!2.00\cdot 10^{_{\!-6}} \ / \ \delta_{_{\!PMMA}}\!\!=\!\!2.17\cdot 10^{_{\!-6}}$$



Summary

- X-ray or neutron reflectometry is a very helpful tool to investigate thin layer systems.
- The reflectivity is basically sensitive to the density profile perpendicular to the sample surface.

$$I(q_z) \propto \frac{1}{q_z^4} \left| \int \frac{d\rho}{dz} \exp(iq_z z) dz \right|^2$$

- Special care has to be taken when aligning the samples on a diffractometer.
- To successfully analyze the data often special tricks have to be applied.

