Modern Crystallography

Topics:

20.11. Crystalline state definition, interaction types in crystalline materials lattice types, symmetry operations, reciprocal lattice
27.11. X-ray diffraction (kinematic theory)

Bragg equation, Laue equations, Ewald sphere, atomic form factor, structure factor, absorption
4.12 experimental X-ray structure determination experimental methods, phase problem, phase retrieval methods, structure refinement
11.12 modern applications of crystallography protein crystallography, powder diffraction, time-resolved crystallography (pump and probe)

Recommended literature

Michael M. Woolfson: An introduction to X-ray crystallography (Cambridge University Press)
C. Ciaccovazzo: Fundamentals of Crystallography
(International Union of Crystallography)
International Tables of Crystallography, Vol I
(International Union of Crystallography)

Relation between crystal habit, symmetry and structure

Chemical interaction forces in crystals

Metallic bond

Hydrogen bond

Ionic bond

Van der Waals bond

Covalent bond

Definition of a crystal

A crystal is made up of atoms, ions or molecules arranged in a regular and periodic fashion. The regular repetition in space is usually called a periodic translation and we shall specify the three independent directions of space by the translation vectors \mathbf{a}, \mathbf{b} and \mathbf{c}.

The repeating unit in this threedimensional structure is called "unit cell", defined by the vectors \mathbf{a}, \mathbf{b}, and \mathbf{c} and the angels $\boldsymbol{\alpha}, \boldsymbol{\beta}$, and $\boldsymbol{\gamma}$.

'right' unit cell choice

7 primitive crystal lattices

Centered unit cells -> 14 Bravais lattices

Close packing of spheres (metals)

parameter	fcc	Bcc
Symmetry	Cubic	Hexagonal
Coordinatio n number	12	12
Packing density	0.7405	0.7405

packing density:

$$
\frac{\pi}{3 \sqrt{2}} \simeq 0.74048
$$

Symmetries in molecules and crystals

Symmetry elements in crystallography

Definition

A symmetry operation on an object is a displacement, which maps the object onto itself such that the mapped object cannot be distinguished from the object in the original state.

2 different types:
without translation rotation axes mirror planes
with translational component:
screw axes mirror glide planes

Type of symmetry element Written symbol
Graphical symbol

center of inversion and mirror planes

pm
No. 3
m
p1m1

Rectangular
Patterson symmetry $p 2 \mathrm{~mm}$

Rotation axes

$$
p 2 \text { No.2 }
$$

Hexagonal 6
p 6
No. 16
$p 6$

Screw axes

mirror glide planes

$c m$
No. 5
c] $m 1$
,
$m \quad$ Rectangular

Origin on m

Lattice symmetry directions directions

popular symmetry directions in real space:
[10 100] along a-axis [010 1 0] along b-axis [0 0 11] along c-axis [1 11 1] along body diagonal [1 110] along face diagonal

Three dimensions			
Triclinic	None		
Monoclinic*	[010] ('unique axis b ') [001] ('unique axis c)		
Orthorhombic	[100]	[010]	[001]
Tetragonal	[001]	$\left\{\begin{array}{l}{[100]} \\ {[010]}\end{array}\right\}$	$\left\{\begin{array}{l}{[1 \overline{1} 0]} \\ {[110]}\end{array}\right\}$
Hexagonat	[001]	$\left\{\begin{array}{l}{[100]} \\ {[010]} \\ {[110]}\end{array}\right\}$	$\left\{\begin{array}{l}{[1 \overline{1} 0]} \\ {[120]} \\ {[210]}\end{array}\right\}$
Rhombohedral (hexagonal axes)	[001]	$\left\{\begin{array}{l}{[100]} \\ {[010]} \\ {[110]}\end{array}\right\}$	
Rhombohedral (rhombohedral axes)	[111]	$\left\{\begin{array}{l}{[110]} \\ {[01 \overline{1}]} \\ {[101]}\end{array}\right\}$	
Cubic	$\left\{\begin{array}{l}{[100]} \\ {[010]} \\ {[001]}\end{array}\right\}$	$\left\{\begin{array}{l}{[111]} \\ {[1 \overline{1}]} \\ {[\overline{1} 1 \overline{1}]} \\ {[\overline{111}]}\end{array}\right\}$	$\left\{\begin{array}{l}{[1 \overline{1} 0][110]} \\ {[01 \overline{1}][011]} \\ {[101][101]}\end{array}\right\}$

space group symbols

230 space groups

among them:
non-centro-symmetric space groups
no inversion center, no mirror planes

- molecules of biological relevance, e.g. amino acids, proteins
- optical activity

22 (21) polar space groups
only polar axes, no inversion center

- piezo electric effect
- second harmonic generation

Crystallographic planes - Miller indices

Three lattice points define a crystallographic plane. Intersection with the three crystallographic axes at points
$A=c / l, B=b / k$, and $C=c / l$
(h k I) => Miller Indices, h,k,l integers, no common divider.

Concept of the reciprocal lattice

reciprocal lattice defined by the three lattice vectors: a^{*}, b^{*}, c^{*}

$$
\begin{array}{lll}
a \cdot a^{*}=1 & b \cdot a^{*}=0 & c \cdot a^{*}=0 \\
b \cdot a^{*}=0 & b \cdot b^{*}=1 & c \cdot b^{*}=0 \\
c \cdot a^{*}=0 & c \cdot b^{*}=0 & c \cdot c^{*}=1
\end{array}
$$

reciprocal lattice vector:
$\vec{s}=h \cdot \vec{a}^{*}+k \cdot \vec{b}^{*}+l \cdot \vec{c}^{*}$
attention:

$\vec{Q}=\frac{2 \pi}{\lambda} \vec{S}$

