

Methoden moderner Röntgenphysik: Streuung und Abbildung

Lecture 17 Vorlesung zum Haupt- oder Masterstudiengang Physik, SoSe 2021
 G. Grübel, O. Seeck, <u>F. Lehmkühler</u>, A. Philippi-Kobs, V. Markmann, M. Martins
 Location online

DateTuesday12:30 - 14:00(starting 6.4.)Thursday8:30 - 10:00(until 8.7.)

Soft Matter – Timeline

- Do 27.05.2021 Soft Matter studies I: Methods & experiments
 Definitions, complex liquids, colloids, storage ring and FEL experiments, setups, liquid jets, ...
- Di 01.06.2021 Soft Matter studies II: Structure
 SAXS & WAXS applications, X-ray cross correlations, ...
- Do 03.06.2021 Soft Matter studies III: Dynamics
 XPCS applications, diffusion, dynamical heterogeneities, ...
- Di 08.06.2021 XPCS & XCCA simulations and modelling
- Do 10.06.2021 Case study I: Glass transition
 Supercooled liquids, glasses vs. crystals, glass transition concepts, structure-dynamics relations, ...
- Di 15.05.2021 Case study II: Water
 Phase diagram, anomalies, crystalline and glassy forms, FEL studies, ...
- Do 17.06.2021 Outlook: Opportunities at new facilities

Probing dynamics with coherent X-rays: X-ray photon correlation spectroscopy (XPCS)

X-ray scattering from disordered samples: speckles \rightarrow structure decoded

Methoden Moderner Röntgenphysik - Vorlesung im Masterstudiengang, Universität Hamburg, SoSe 2021

XPCS

- Time domain: changing sample structure \rightarrow change of speckle pattern
- Correlation function $g_2(q,\tau) = \frac{\langle I(q,t)I(q,t+\tau)\rangle_t}{\langle I(q,t)\rangle_t^2} = 1 + \beta^2 |f(q,\tau)|^2$, speckle contrast $\beta = \operatorname{std}(I)/\langle I \rangle$
- Intermediate scattering function $f(q, \tau) = S(q, \tau)/S(q, 0)$

XPCS experiments – requirements

- Degree of coherence \rightarrow speckle contrast
- Need to resolve speckles
 - speckle size $s \approx \frac{\lambda D}{h}$
 - using hard X-rays $(\lambda \sim 10^{-10} \text{ m})$

$$\rightarrow \frac{bs}{D} = 10^{-10}$$
 n

- $\rightarrow bs \sim 10^{-10} \text{ m}^2 \text{ for } D \sim 1 \text{ m}$
- Statistics and q-dependence: 2D detectors (e.g. CCD)
 - Typical pixel sizes of ${\sim}10-100~\mu\text{m}$
 - Consequently beam sizes in the μ m regime
- Limit of time scales by detector read-out
 - CCD: ~ seconds
 - Photon counting: >kHz

XPCS experiments – requirements

Speckle contrast as a function of various parameters

DESY

Diffusion in Soft Matter

- Brownian motion: random movement of particles (pollen collision with water molecules (Einstein 1905))
- Omnipresent in soft matter systems
- Derivation (after Langevin, here only one direction *x*):

 $m\frac{d^{2}x}{dt^{2}} = F - f\frac{dx}{dt}$ (with force F and viscous friction $F_{R} = -f\frac{dx}{dt}$) $\Leftrightarrow m\frac{d}{dt}\langle v \rangle = \langle F \rangle - f\langle v \rangle$ (Averaging)

 $\langle F \rangle = 0$ for random particle collisons

$$\frac{d}{dt} \langle v \rangle = -\frac{f}{m} \langle v \rangle$$
$$\Rightarrow \langle v(t) \rangle = v(0) \exp\left(-\frac{m}{f}t\right)$$

Diffusion of particles

Methoden Moderner Röntgenphysik - Vorlesung im Masterstudiengang, Universität Hamburg, SoSe 2021

Diffusion in Soft Matter

→ Mean drift velocity $\langle v \rangle$ decays with time. Back to $m \frac{d}{dt} v = F - fv$. Multiply by instantaneous position r of an particle and average yields:

$$\frac{d^2}{dt^2} \langle r^2 \rangle + \frac{f}{m} \frac{d}{dt} \langle r^2 \rangle = 2 \langle v^2 \rangle$$

Following the equipartition theorem ($\langle v^2 \rangle = \frac{3k_BT}{m}$) the equation can be solved with the result

$$\langle r^2 \rangle = \frac{6k_B Tm}{f^2} \left(\frac{f}{m} t - \left[1 - \exp\left(-\frac{f}{m} t \right) \right] \right)$$

For $t \gg \frac{m}{f}$ we obtain with Stoke's law (friction of spheres, $f = 6\pi R\eta$)

$$\langle r^2 \rangle = \left(\frac{k_B T}{\pi R \eta}\right) t = 6Dt$$
 with diffusion coefficient $D = \frac{k_B T}{6\pi \eta R}$

Diffusion in Soft Matter

Mean squared displacement $\langle r^2 \rangle$ – particles in water

Characteristic time $\tau_B = \frac{R^2}{D}$ to move by one radius (here $4.5 \cdot 10^{-9}$ s for R = 1 nm)

Diffusion in Soft Matter – XPCS

Intermediate scattering function $f(q, \tau) = S(q, \tau)/S(q, 0)$ with

$$f(q,\tau) = \frac{1}{N} \left\{ \sum_{i=1}^{N} \sum_{j=1}^{N} \exp(i\mathbf{q} \cdot [\mathbf{r}_{i}(0) - \mathbf{r}_{j}(\tau)]) \right\}$$

For diffusion, only single particle properties are probed \rightarrow cross terms $i \neq j$ average out and $S(q) = 1 \rightarrow$ we obtain

$$f(q,\tau) = \frac{1}{N} \left\{ \sum_{i=1}^{N} \exp(i\mathbf{q} \cdot [\mathbf{r}_{i}(0) - \mathbf{r}_{i}(\tau)]) \right\}$$

And finally (cf. Physica 32, 415 (1966)) the result for diffusion

$$f(q,\tau) = \exp(-Dq^2\tau)$$

UH Universität Hamburg DER FORSCHUNG I DER LEHRE I DER BILDUR

Diffusion by XPCS – Notes

• In XPCS, correlation function for diffusion:

$$g_2(q,\tau) = 1 + \beta^2 |f(q,\tau)|^2 = 1 + \beta^2 \exp(-2Dq^2\tau)$$

- Relaxation time $\tau_0 = \frac{1}{\Gamma} = \frac{1}{Dq^2} \rightarrow$ characteristic $\tau_0 \propto q^{-2}$
- Measuring g_2 allows to obtain particle size $R = \frac{k_B T \tau_0 q^2}{6\pi \eta}$ when solvent properties are known \rightarrow Dynamical light scattering
- On the other hand, known particles can be used to probe solvent properties, in particular viscosity $\eta \rightarrow$ microrheology

XPCS – correlation functions

- Stretched and compressed correlation functions: Kohlrausch-Williams-Watts function $f(q, \tau) = \exp(-(\Gamma \tau)^{\gamma})$
- Measure of width of distribution of (local) relaxation times

XPCS – correlation functions

Example: heterogeneous dynamics

- Diffusive dynamics of 100 nm particles
- Compared to average of 50 nm and 150 nm particles (Note: scattering strength different in reality!)
- Correlation function appears stretched, here: $\gamma = 0.89$

 \rightarrow disperse particles

 \rightarrow dynamic heterogeneities, e.g. for glass transition (see lecture 19)

XPCS – correlation functions

Q-dependencies

- Diffusion: $\tau_0 \propto q^{-2}$, $\langle r^2 \rangle \propto \tau$
- More general $(\tau_0 \propto q^{-\delta})$: $\langle r^2 \rangle \propto \tau^{\alpha} \rightsquigarrow r \propto \tau^{\frac{\alpha}{2}} \rightsquigarrow \tau \propto q^{\frac{2}{\alpha}} \Rightarrow \alpha \delta = -2$
- Diffusion: $\delta = 2$
- Subdiffusion: $\delta > 2$
- Superdiffusion: $\delta < 2$
- Balistic motion: $\delta = 1$

→ The analysis of both exponents γ and δ provides information on the type of dynamics

XPCS – instantaneous correlation function

Measured speckle patterns

 10^{2}

Methoden Moderner Röntgenphysik - Vorlesung im Masterstudiengang, Universität Hamburg, SoSe 2021

Example for an aging sample

SiO₂ colloidal spheres in glycerol/water

- Low concentration: volume fraction 1%
- SAXS: Formfactor
- XPCS: diffusion with $\Gamma \propto q^2$

G. Grübel et al. In "Soft Matter Characterization", Springer (2008)

XPCS example 1 – dynamics in colloidal systems

PMMA particles in decalin

- High concentration: volume fraction 37%
- SAXS: Structure factor
- XPCS results deviate from $\Gamma \propto q^2$
- Effective diffusion constant $D(q) = D_0 H(q)/S(q)$ for short times, hydrodynamic function H(q)
- $H(q) = 1 \Rightarrow D(q) = D_0/S(q)$: de Gennes narrowing, i.e. slowing down around next-neighbour distances.

G. Grübel et al. In "Soft Matter Characterization", Springer (2008)

XPCS example 2 – microrheology

Tracer particles to measure solvent properties

- Weak scattering signal from solvent
- Large q-region has to be probed (low speckle contrast)
- Slower dynamics in SAXS regime
- Indirect access to solvent properties only
- Length scale of several 10 nm given by the tracer particle size
- Low tracer particle concentrations, so that S(q) = 1 for the particles \rightarrow avoid any particle-solvent interactions

XPCS example 2 – microrheology

- SiO₂ particles as tracer for gelation of methylcellulose in water
- Gel-gel-transition: Turbid gel for $T \ge 60$ °C
- Stretched (γ < 1) to compressed (γ > 1) transition (KWW exponent!)
- Hyper-diffusive & compressed at high temperatures → stressdominated

B. Ruta et al. Soft Matter 10, 4547 (2014)

Methoden Moderner Röntgenphysik - Vorlesung im Masterstudiengang, Universität Hamburg, SoSe 2021

- Poly(N-isopropylacrylamide) (PNIPAM) particles (here: coreshell particles)
- Temperature-responsive: volume phase transition at ~32°C (LCST, lower critical solution temperature)
- Change of interaction potential: from repulsive to attractive upon heating → gelation

XPCS example 3 – gelation B

Correlation functions

- KWW model $g_2(q, \tau) = 1 + \beta \exp(-2(\tau/\tau_c)^{\gamma})$
- Q-dependency: $\tau_c \propto q^{-p}$
- Three regimes
 - a. Subdiffusive dynamics with $p \approx 3$, $\gamma \approx 0.5$
 - b. Speed up with p > 2, $\gamma < 1$ & second decay
 - c. Sudden slow-down with $p \approx 1, \gamma \approx 2$

Results

- Polymer-driven dynamics below LCST
- Colloidal gel above ~37°C, well above LCST

L. Frenzel et al. J. Phys. Chem. Lett. 10, 5231 (2019)

XPCS example 4 – Network formation and heterogeneous dynamcis in egg cooking

Time evolution of the dynamics of egg white after heating to 80 °C

Network formation after 400 s

→ "perfect" egg takes about 6.5 min

N. Begam et al. Phys. Rev. Lett. 126, 098001 (2021)

XPCS example 5 – directed motion

Sample undergoes (shear) flow

- Flowing sample to avoid radiation damage
- Sedimentation of particles
- $f(q, \tau)$: product of diffusive and advective contributions $f(q, \tau) = f_d(q, \tau) \cdot f_a(q, \tau) = \exp(-\Gamma t) \cdot f_a(q, \tau)$
- $f_a(q,\tau)$ can become complicated

Perpendicular to flow it simplifies to $g_{2,\perp}(q,\tau) = 1 + \beta^2 \exp(-2\Gamma\tau) \exp(-(\nu_{tr}t)^2)$, transit-induced frequency ν_{tr}

In flow direction: oscillating behaviour

Flow

Particle sedimentation J. Möller et al. PRL 118, 198001 (2017)

Methoden Moderner Röntgenphysik - Vorlesung im Masterstudiengang, Universität Hamburg, SoSe 2021

XPCS example 6 – Large q

PLD beam width

Reduced speckle contrast at large q (molecular length scales) because of longitudinal coherence length \rightarrow path length differences

Mainly dependent on energy bandwidth, beam size, sample thickness \rightarrow small beams and thin samples

SAXS: $\theta \approx 0.1^{\circ} \rightarrow \text{PLD} < 0.02 \ \mu\text{m}$

WAXS: $\theta = 25^{\circ} \rightarrow PLD = 4.2 \ \mu m$ (beam width 10 μm)

Compare to longitudinal coherence length of few µm

XPCS example 6 – Large q

Atomic scale dynamics from metallic glasses

Here:
$$q \approx 2.56 \text{ Å}^{-1} \rightarrow \text{length scale of } \frac{2\pi}{q} \approx 2.5 \text{ Å}$$

 \rightarrow More details in upcoming lectures

XPCS example 7 – X-ray speckle visibility spectroscopy

Dynamics via change of exposure times

• Contrast as function of exposure $(\beta^2 = \frac{\langle I^2 \rangle}{\langle I \rangle^2} - 1)$

•
$$\beta^2(q, t_e) = \frac{2\beta_0^2}{t_e} \int_0^{t_e} \left(1 - \frac{\tau}{t_e}\right) |f(q, \tau)|^2 d\tau$$

- For diffusion, this can be solved analytically (\rightarrow Exercise!)
- Limited by accessible exposure times
 - Pulse lengths (FEL)
 - Detector read out & flux (storage rings)
- FEL: pulse lengths variations & split-pulse applications
- Examples: Lecture 21

XPCS: further examples

- Glass dynamics and glass transition (\rightarrow lecture 19)
- In general, large q experiments
 - Water (\rightarrow lecture 20)
 - Hard condensed matter
 - Atomic diffusion
 - Domain wall dynamics
 - Network glasses (SiO2, ...)
 - ...
- Liquid surfaces: capillary waves \rightarrow oscillating ISF
- Outlook for new X-ray sources \rightarrow Lecture 21

• Relation to neutron spin echo and dynamic light scattering

۲

. . .