

Methoden moderner Röntgenphysik: Streuung und Abbildung

Lecture 16 Vorlesung zum Haupt- oder Masterstudiengang Physik, SoSe 2021
 G. Grübel, O. Seeck, <u>F. Lehmkühler</u>, A. Philippi-Kobs, V. Markmann, M. Martins
 Location online

DateTuesday12:30 - 14:00(starting 6.4.)Thursday8:30 - 10:00(until 8.7.)

Soft Matter – Timeline

- Do 27.05.2021 Soft Matter studies I: Methods & experiments
 Definitions, complex liquids, colloids, storage ring and FEL experiments, setups, liquid jets, ...
- Di 01.06.2021 Soft Matter studies II: Structure
 SAXS & WAXS applications, X-ray cross correlations, ...
- Do 03.06.2021 Soft Matter studies III: Dynamics
 XPCS applications, diffusion, dynamical heterogeneities, ...
- Di 08.06.2021 XPCS & XCCA simulations and modelling
- Do 10.06.2021 Case study I: Glass transition
 Supercooled liquids, glasses vs. crystals, glass transition concepts, structure-dynamics relations, ...
- Di 15.05.2021 Case study II: Water
 Phase diagram, anomalies, crystalline and glassy forms, FEL studies, ...
- Do 17.06.2021 Outlook: Opportunities at new facilities

Small-angle X-ray scattering

Typical dimensions of soft matter: $1 \sim 1000$ nm \rightarrow Small angles using hard X-rays

Soft matter: "particles" and "solvent"

Small-angle X-ray scattering

Web of knowledge topic search: "Small angle X-ray scattering"

SAXS – Analysis methods: Formfactor

Lecture 6: $I_{SAXS}(q) = (\rho_{sI,p} - \rho_{sI,0})^2 \left| \int_{V_p} e^{iqr} dV_p \right|^2$ for particle (p) in solvent (0)

Diluted case: Formfactors

• Spheres: $F(q) = 3 \frac{\sin(qR) - qR\cos(qR)}{(qR)^3}$

- In general difficult to calculate → numerical approaches
- Soft Matter: Dispersity & (solvent) background

•
$$I_c = \frac{1}{I_0} \frac{\frac{I_{raw}}{t_e} - \frac{I_{dark}}{t_{dark}}}{I_{qe}} \cdot \frac{D_p^2}{p^2} \cdot \frac{D_p}{D_0} \Rightarrow I_{particle} = \frac{I_{c,s}}{d_s T_s} - \frac{I_{c,b}}{d_b T_b}$$

Chem. Rev. 116, 11128 (2016)

SAXS – Analysis methods: Formfactor

Ab initio methods (use "dummy"

doi:10.1042/ETLS20170138

Monte-Carlo methods (calculate scattering from differently sized spheres)

SAXS – Analysis methods: Formfactor

Large-q approximation: Porod's law

• Spheres: $I(q) \propto q^{-4}$

Small-q approximation: Guinier regime

•
$$I(q) \approx I(0) \exp\left(-\frac{q^2 R_g^2}{3}\right)$$
 for $qR_g < 1$

- Radius of gyration R_g
- Spheres: $R_g = \sqrt{\frac{3}{5}}R$

Slope: $R_g = 0.780$ $\rightarrow R = 1.007$

SAXS – Analysis methods: Formfactors & dispersity

In reality, particle show a certain size distribution

Use distribution function n(R) with $\int n(R) dR = 1$:

$$I_{SAXS}(q) = \int n(R) I_{formfactor}(q, R) dR$$

For colloids and polymers, a Schulz-Zimm distribution is frequently used:

$$n(R, R_0, z) = \frac{1}{(z+1)!} \left(\frac{z+1}{R_0}\right)^{z+1} R^z \exp\left(-\frac{z+1}{R_0}R\right)$$

Dispersity:
$$p = \frac{\Delta R}{R_0} = \sqrt{\frac{1}{z+1}}$$
, here: 30%, 18%, 10%

SAXS – Analysis methods: Structure factors

From lecture 5 (Kinematical Diffraction I): Structure factor of a liquid (or glass)

$$S(q) = 1 + \rho_0 \int_0^\infty \frac{4\pi r}{q} [g(r) - 1] \sin(qr) dr$$

With the radial pair correlation function g(r). This relates to the potential of mean force between two particles $U_{MF}(r)$

$$g(r) = \exp\left(-\frac{U_{MF}(r)}{k_B T}\right)$$

For very dilute systems $U_{MF}(r)$ equals the interaction potential U(r).

Relation of S(q) or g(r) and $U(r) \rightarrow$ **Ornstein-Zernike equation** relating total correlations $h(r) \equiv g(r) - 1$ to direct two-particle correlations c(r) and indirect correlations $c(|\mathbf{r} - \mathbf{r}'|)$ (i.e. via third particles)

$$h(r) = c(r) + \rho_0 \int c(|\mathbf{r} - \mathbf{r}'|)h(|\mathbf{r}'|)d\mathbf{r}'$$

SAXS – Analysis methods: Structure factors

$$h(r) = \frac{c(r)}{c(r)} + \rho_0 \int c(|\mathbf{r} - \mathbf{r}'|)h(|\mathbf{r}'|)d\mathbf{r}'$$

c(r) short range part.

Structure factor \rightarrow Fourier transform: $\hat{h}(q) = \hat{c}(q) + \rho \hat{h}(q) \hat{c}(q)$

OZ equation (or its Fourier transform) represents an infinitive recursion \rightarrow can be solved using so-called "closure relations", taking potential U(r) into account.

Percus-Yevick closure:

$$c(r) = g(r) \left[1 - \exp\left(\frac{U(r)}{k_B T}\right) \right]$$

→ solves the hard-sphere potential $U_{HS}(r) = \begin{cases} \infty, r \leq 2R \\ 0, r > 2R \end{cases}$ analytically.

→ Mean-spherical approximation closure relation $c(r) = -\frac{U_{ES}(r)}{k_B T}$ solves electrostatic interactions (DLVO) [→ Lecture 15]

Structure factors – hard spheres

Hard spheres

- Volume fraction as only parameter
- Does not include crystallisation/glass transition!
- I.e. typically breaks down close to $\Phi\approx 0.5$

Sticky hard spheres

$$\frac{U_{SHS}(r)}{k_B T} = \begin{cases} \infty, & r < \sigma \\ \ln\left(\frac{12\tau\Delta}{\sigma + \Delta}\right), & \sigma \le r \le \sigma + \Delta \\ 0, & \sigma + \Delta < r \end{cases}$$

Structure factors – RMSA

Charge stabilized systems \rightarrow rescaled mean spherical approximation (RMSA)

Structure factor as function of Φ , charge, screening

High screening \rightarrow hard spheres

2.5 3 Φ $C = 100e^{-1}$ $\Phi = 0.09$ c (e) 2.5 0.03 20 2 0.06 50 0.09 2 100 (b)s 0.12 200 (b) S 1.5 0.15 300 0.18 0.5 0.5 0 С 6 2 6 0 2 8 8 0 4 4 qR qR

Example 1: Structure and Formfactors from charge stabilized colloids

PMMA spheres in water

Westermeier et al. JCP 137, 114504 (2012)

Example 2: High pressure studies

- Structure at high pressures \rightarrow solid sample chambers (e.g., diamond windows of 500 µm thickness)
- X-rays to penetrate diamond windows (~30-40 % transmission at ~8-10 keV, see http://henke.lbl.gov/optical_constants/)
- Functionalized core-shell particles at pressures <4 kbar: • from repulsion to attraction (sticky hard spheres!)

J. Phys. Chem. C 2016, 120, 19856-19861

Methoden Moderner Röntgenphysik - Vorlesung im Masterstudiengang, Universität Hamburg, SoSe 2021

a)

Example 2: High pressure studies

- Addition of salt \rightarrow crystallisation at high pressure
- Reason: Solubility of PEG shell in water

а

 10^{8}

10⁶

Example 3: nucleation and growth of quantum dots

B. Abecassis et al. Nano Lett. 15, 2620 (2015)

Example 4: Self assembly of quantum dots / nanoparticles

- Lead sulfate particles (3.9 nm diameter) in heptane / toluene / hexane ...
- Self-assembly to ordered structures upon solvent evaporation → standard route to obtain functional materials made from such nanocrystals
- Track assembly over time: complex phase behaviour

I. Lokteva et al. RSI 90, 036103 (2019) & small 15, 1900438 (2019)

Example 5: Phase transitions in liquid crystals

Isotropic

Smectic

65 nm

(b)

Goethite [α -FeO(OH)] particles in water may form

- Isotropic
- Nematic
- Smectic

Phases \rightarrow SAXS

de Jeu: "Basic X-ray scattering for Soft Matter", 2016

Example 5: Phase transitions in liquid crystals

Disc-systems

- (a) Discotic nematic phase
- (b) Hexagonal columnar phase
- (c) Rectangular columnar phase

Combined SAXS/WAXS from columnar phase

- SAXS: hexagonal intercolumnar order
- WAXS: disorder inside column

de Jeu: "Basic X-ray scattering for Soft Matter", 2016

Further methods and applications

- Anomalous SAXS \rightarrow ASAXS
- Scanning SAXS
- Phase transitions and self-assembly
- Time resolved techniques
- SAXS tomography
- BioSAXS
- Grazing-incidence SAXS (GISAXS)

•

. .

SAXS: 1D information (typically)

→ How to make use of the 2D information obtained from a 2D scattering pattern?

 \rightarrow Angular correlations

1D information (standard SAXS) • $I(\mathbf{q}) = \langle I(q, \varphi) \rangle_{\varphi} = I(q)$

2D information: Angular correlations • $C(q, \Delta) = \frac{\langle I(q, \phi)I(q, \phi + \Delta) \rangle_{\phi} - \langle I(q, \phi) \rangle_{\phi}^2}{\langle I(q, \phi) \rangle_{\phi}^2}$, i.e. correlations of fluctuations

- Coherent X-rays
- Two possibilities:
 - Solve structures in solution
 - Hidden symmetries

Correlation functions

- Quantify correlation (similarity) between two (or more) entities
- Example from signal processing: convolution, cross correlation, autocorrelation

Common correlation function

• $C(r) = \langle I(r_1)I(r_1+r)\rangle_{r_1}$

 \rightarrow compares a signal (intensity) between two points as a function between their (spatial, temporal, ...) difference r

- **XCCA**: angular correlations $C(\Delta) = \langle I(\varphi)I(\varphi + \Delta) \rangle_{\varphi}$
- **XPCS**: temporal correlations $C(\tau) = \langle I(t)I(t+\tau) \rangle_t$

Consider coherent X-ray scattering experiment in transmission geometry (e.g. SAXS) with 2D detector on disordered sample of N identical particles

$$A_{j}(\mathbf{q}) = \int \rho_{j}(\mathbf{r}) e^{i\mathbf{q}\mathbf{r}} d\mathbf{r} \to \mathbf{I}(\mathbf{q}) = \sum_{j_{1}, j_{2}=1}^{N} e^{i\mathbf{q}\mathbf{R}(j_{1}, j_{2})} A_{j_{1}}^{*}(\mathbf{q}) A_{j_{2}}(\mathbf{q})$$
$$= \sum_{j_{1}, j_{2}=1}^{N} \int \int \rho_{j_{1}}^{*}(\mathbf{r}_{1}) \rho_{j_{2}}(\mathbf{r}_{2}) e^{i\mathbf{q}(\mathbf{R}(j_{1}, j_{2}) + \mathbf{r}_{21})} d\mathbf{r}_{1} d\mathbf{r}_{2}$$

Partially coherent illumination and dilute system (particles distance > coherence length) \rightarrow interparticle correlations can be neglected:

$$I(\mathbf{q}) = \sum_{j=1}^{N} I_j(\mathbf{q}) = \sum_{j=1}^{N} |A_j(\mathbf{q})|^2$$

Angular information: Fourier decomposition

$$I(\mathbf{q}) = I(q,\phi) = \sum_{l=-\infty}^{\infty} \hat{I}_{\ell}(q) e^{il\phi}; \quad \hat{I}_{\ell}(q) = \frac{1}{2\pi} \int_{0}^{2\pi} I(q,\phi) e^{-i\ell\phi} \, \mathrm{d}\phi$$

Now consider 2D disordered system in the dilute limit, e.g. pentagonal arrangement of particles (polar coordinates, R_0 radius of pentagon, $\theta_j = \frac{2\pi j}{5}$)

 $\rho(r,\theta) = \frac{\delta(r-R_0)}{R_0} \sum_{i=1}^{5} \delta(\theta - \theta_i)$

Expansion of scattering amplitude in Fourier series yields

$$A(q,\phi) = \sum_{\ell=-\infty}^{\infty} \hat{a}_{\ell}(q) e^{il\phi}$$
(1)

with Fourier coefficients

$$\hat{a}_{\ell}(q) = i^{-\ell} J_{\ell}(qR_0) \sum_{j=1}^{5} e_j^{il\theta_j}$$
(2)

- Pentagonal symmetry: only contribution if $\ell = 0 \mod 5$ in (2).
- Odd terms cancel out pairwise (e.g. $\ell = 5$ and $\ell = -5$) in (1) \rightarrow Friedel's law!
- Only contributions with $\ell = 0 \mod 10$
- $F_l(q) \propto J_\ell(qR_0) \rightarrow$ higher-order terms at large q

- Corresponding correlation function $C(q, \Delta) = \frac{\langle I(q,\phi)I(q,\phi+\Delta)\rangle_{\phi} \langle I(q,\phi)\rangle_{\phi}^2}{\langle I(q,\phi)\rangle_{\phi}^2}$ with Fourier coefficients $\hat{c}_{\ell}(q) = |\hat{I}_{\ell}(q)|^2$ (Wiener–Khinchin theorem)
- Correlations between different q possible

Adv. Chem. Phys. 161, 1 (2016)

• 3D systems: curvature of Ewald sphere \rightarrow odd symmetries

2D model system: Heptagons and Pentagons

0.06

0.04

XCCA example 1: Hard-sphere glass

- \rightarrow Hidden symmetries
- \rightarrow Structural information beyond SAXS

PNAS 109, 11511 (2009)

XCCA example 2: Self-assembled nanoparticle films

Films of assembled gold particles (12 nm radius): special plasmonic and optical properties

From mono- to multilayers

Diffraction pattern: 2D hexagonal lattice

Adv. Mater. Interf. 7, 2000919 (2020)

XCCA example 2: Self-assembled nanoparticle films

XCCA example 2: Self-assembled nanoparticle films

- The fourth and the sixth Fourier coefficients of the cross-correlation function from Bragg reflections during in-situ self-assembly
- Support SAXS data
 - (I) colloidal suspension
 - (II) swollen hcp superlattice(III) dried bcc superlattice
- Coexisting bcc phase in II

I. Lokteva et al. RSI 90, 036103 (2019) & small 15, 1900438 (2019)

C4 0.3 (a) 20 0.25 40 0.2 t (min) 60 Ш 0.15 80 (110)_{hcp} (100)_{hcp} 0.1 100 0.05 120 0 1.2 1.4 1.6 1.8 0.8 1 2 q (nm⁻¹) C₆ 0.3 (b) 20 0.25 40 0.2 t (min) 60 0.15 80 $(100)_{hcp}$ $(110)_{hcp}$ 0.1 100 0.05 Ш 120 (110)_{bcc} 0 1.2 1.4 1.6 1.8 2 0.8 1 q (nm⁻¹)

XCCA example 3: Liquid crystals

High number of symmetries \rightarrow strongly developed hexatic order

Measure of correlation length

XCCA to provide measure of degree of order and as order parameter for phase transitions

Adv. Chem. Phys. 161, 1 (2016)

XCCA example 4: Sample reconstruction

Nat. Comm. 4, 1647 (2013)

