Cover
While vaccines offer great relief to the burden that the SARS-CoV-2 virus has put on global health and economics, the appearance of more resistant coronavirus mutants has demonstrated that additional treatment options with drugs are desperately needed. Among other screening techniques, X-ray crystallography is a powerful tool in modern drug discovery as it sheds light on how exactly a drug acts on its target protein — with atomic resolution. In a massive screening campaign at PETRA III one promising drug compound was identified and is being further evaluated.

The cover picture displays a promising candidate for a drug against SARS-CoV-2. The potent inhibitor calpeptin (blue sticks) shows antiviral activity and binds tightly to the active site of the key enzyme (Mpro) of SARS-CoV-2 (grey surface). The X-ray structure of Mpro and calpeptin reveals that the inhibitor uses important pockets (green and yellow) in the active site of the protein for binding. Further amino acids that interact with calpeptin are shown as grey sticks (details see page 18).

(Reprint from original publication in 'Science' licensed under CC BY 4.0)
The list of publications based on work done at DESY Photon Science is accessible online:

DESY tries to keep this list complete and up-to-date and relies on the support by all users, who are kindly requested to register their publications via DOOR (door.desy.de)
The year 2021 at DESY

Chairman’s foreword

Dear Colleagues and Friends of DESY,

German Nobel Prizes in physics and chemistry in 2021 as well as in 2020 and the rapid development of a Covid-19 vaccine through the outstanding research and development work in the BioNTech company. These are spectacular scientific breakthroughs that impressively show the strong German role in worldwide fundamental and applied research.

To open up completely new possibilities of knowledge generation, DESY has a highly ambitious future plan at its two sites to shape the research campus of the 21st century. Here, applied research leveraging the potential of cutting-edge research infrastructures and rapid transfer to industry and society will be promoted and shaped in a smart ‘ecosystem’.

In order to implement this plan in a highly competitive environment, we need to get important construction projects underway quickly in the current funding period so as not to fall behind internationally. This applies to the various construction projects in the areas of research, transfer and knowledge communication at the DESY sites in Hamburg and Zeuthen. But it applies especially to the PETRA IV project, the world-leading lighthouse in research with synchrotron radiation. With the newly developed revolutionary storage ring technology, the hybrid 6-bend achromat (H6BA) lattice, we are placing the performance of German and European light sources ahead of those in the USA and China.

The lessons learned from the Corona pandemic and the acute climate crisis are forcing us to leave comfort zones. For us at DESY this means that we are questioning our daily life we have become used to. How will we work and research at DESY in the future? How and how much will we travel in the future? How will we organise a sustainable research campus in the future? How do we coordinate a climate-friendly operation for users at our large-scale research facilities that does not allow any compromises in quality? Will it then be possible to be still appealing to new user groups from academia and industry? If we find the right answers and smart solutions I am convinced that DESY will remain a future-oriented research centre, perhaps even more diverse and even more climate — and family — friendly and it will continue to attract the best talents from all over the world.

We were privileged to host the award ceremony for this year’s Karl Heinz Beckurts Prize at DESY. The Helmholtz Association, together with the Siemens AG, established the Karl Heinz Beckurts foundation. In addition to the prize winner Vasilis Ntziachristos (Helmholtz Zentrum München and TU München), also Ingmar Hoer (CureVac), Uğur Sahin and Özlem Terici (BioNTech) were honored with a special prize. Among the guests was Roland Busch, chief executive officer of Siemens who was very impressed by a tour of the DESY site. Personally, I was touched by the first names of the award winners: Vasilis, Ingmar, Uğur, Özlem. There is no shorter or better way to show where our future lies — DESY has lived this diversity since its foundation.

This year, DESY has signed the ‘Diversity Charter’ to be part of Germany’s largest diversity network and is actively committed to a diverse as well as prejudice-free working environment and to a signal of appreciation of all employees regardless of their gender and gender identity, nationality, ethnic origin, religion or belief, disability, age, sexual orientation and identity. Here at DESY, great importance is attached to a diverse and prejudice-free working environment and to a signal of appreciation of all employees regardless of their gender and gender identity, nationality, ethnic origin, religion or belief, disability, age, sexual orientation and identity. Here at DESY, great importance is attached to an appreciative working atmosphere, the equality of all employees and a better work-life balance.

Since September 2021 the Start-up Labs Bahrenfeld, a project jointly managed by DESY, the University of Hamburg and the City of Hamburg, is the new place for science entrepreneurship on DESY’s research campus. The variety of different fields covered by our young entrepreneurs is huge, ranging from synchronisation systems to individualised tests for diagnosing cancer.

DESY and the Hamburg University of Applied Sciences (HAW Hamburg) agreed on a new strategic Cooperation for Application and Innovation (KAI) with a focus on joint research and development programmes, dual education as well as innovation and technology transfer. KAI will help shape Hamburg’s structural transformation to become a science and innovation place in the North of Germany.

Finally, I would like to mention our public outreach format ‘Wissen vom Fass’ (Science on tap) in which scientists from the University of Hamburg and DESY explain science topics and answer exciting questions from the world of research to the public. This year, the event was purely digital, but it was just as entertaining and enjoyable as before for all.

In these challenging times, I would like to thank the staff and all our national and international users and partners for their valuable contribution to DESY. Please remain very careful in this tricky winter period and beyond. I wish you all the best!

Helmut Dosch
Chairman of the DESY Board of Directors
Dear Colleagues and Friends of DESY Photon Science,

The year 2021 has already been the second one within the Covid-19 pandemic and since new mutations keep arising that seem to escape the trained or acquired capabilities of our immune system, no one can really predict when we will be able to go back to a normal situation — whatever that means after the pandemic. However, the restrictions within the pandemic have also forced us to accelerate a number of developments that probably would have taken much longer otherwise. We learned to use different video-conferencing tools to communicate quite efficiently and I dare predict that we will no longer travel for hours for brief meetings or workshops in the future. As soon as larger in-person meetings will be possible again, almost all conferences will likely be hybrid meetings just because one will be able to reach out to a much larger audience. This has been demonstrated by the 2021 DESY Photon Science Users’ Meeting with more than 2000 registered participants from about 40 countries and by many on-line workshops and poster sessions organised during the last year at DESY.

The pandemic is also influencing the way we are organising our user operation in the future. Due to an increased fraction of mail-in and remote-access experiments, the number of user visits was reduced by about 50%, even though the scope of the experimental user programme was not reduced. To a large extent, this was only possible due to the exceptional effort the beamline staff at PETRA III and FLASH made to enable almost all scheduled experiments. However, such an operation mode is not sustainable without additional personnel and resources. The challenge for the future will be to organise an efficient user operation that also provides complex in situ or operando experiments in a sustainable fashion with a reduced travel CO₂ footprint and at the same time renders excellent communication between facility staff and users as well as training opportunities for young scientists.

Despite the pandemic, the user operation at PETRA III was very successful under the conditions mentioned above. Due to travel restrictions, the number of non-German on-site users was significantly reduced with a large fraction of mail-in experiments for international users. With the start of user operation at the time-resolved luminescence spectroscopy beamline P66 the PETRA III extension project has officially been completed. Activities to fill up the remaining two undulator ports of beamlines P25 and P65 are still ongoing.

So far user proposals for PETRA III were ranked according to their scientific excellence as the only criteria after a suitable feasibility check. After discussion in our advisory bodies, in future proposals for the DESY Photon Science facilities will in addition be ranked according to their socio-economic impact.

The preparatory work for DESY’s main future project PETRA IV is progressing well. According to the present schedule the Technical Design Report (TDR) should be finished by the end of 2023 and if a funding decision will be made in same year the shutdown for the upgrade would be from 2026 to 2028. During 2021, important project milestones have been achieved. In collaboration with colleagues from ESRF, a new design of the magnetic lattice has been worked out that will enable a world-record low horizontal emittance in the 20 pmrad regime and at the same time operation conditions in terms of beam lifetime and injection schemes comparable to present 3rd generation facilities. The new lattice will enable 33-35 undulator ports. In close collaboration with the user community, the DESY Photon Science Committee (PSC) and external experts, a first portfolio of 27 PETRA IV beamlines has been selected from a much larger number of scientific instrument proposals. The remaining free ports will provide ample of opportunities for new ideas in future.

The user operation at FLASH was somehow stronger affected by the pandemic due to the often significantly more complex experiments that require enhanced user involvement. Also, at FLASH remote participation of users has been significantly increased. Presently, the first phase of the shutdown due to the FLASH2020+ project is ongoing. During this phase, mostly improvements of the superconducting linear accelerator towards a higher electron beam energy and optimisations concerning the bunch compression will be carried out. In a second phase scheduled for the year 2024, new tuneable-gap undulators and schemes for external seeding will be implemented.

DESY Photon Science is involved in three larger user consortia (SFX, HiBEF, hRIXS) at European XFEL. In 2021 the hRIXS consortium was able to commission the new instrumentation and to take first data. In 2021 there was also significant progress in the multi-disciplinary research centres on campus with DESY participation. Scientists from the Center for Free-Electron Laser Science (CFEL) continued to be among the most active experimental groups at European XFEL. After more than two years of construction, scientists from DESY, Hereon, CAU Kiel and IKZ Berlin were able to move into the new building for the Centre for X-ray and Nano Science (CNXS). As the 10th partner, the Forschungszentrum Borstel joined the Centre for Structural Systems Biology (CSSB), strengthening the centre’s expertise in lung research. Within the frame of the Centre for Molecular Water Science (CMWS), a very successful ‘Water Week’ has been organised and a White Paper published, describing the aims of this centre.

The year 2021 was again a difficult one for all research groups and especially for the user operation at our facilities. I heartily thank all those involved for their commitment, so that we could continue to do excellent science under these challenging conditions. In addition, I sincerely hope that we can go back towards a more normal life at some point during the year 2022.

Edgar Weckert
Director DESY Photon Science
News and Events
January

25 January:
Hamburg supports DESY’s large-scale project PETRA IV

Hamburg is supporting DESY for its planned large-scale project PETRA IV with 2.85 million Euro over the next two years. Funding is being provided for the detailed technical planning phase, the so-called Technical Design Report (TDR) of the unique facility, as a precondition for the inclusion of the project in the national roadmap for research infrastructures. PETRA IV is set to become the world’s best 3D X-ray microscope, providing images of processes in new materials and in future medical agents that are hundreds of times more accurate than previously possible. PETRA IV will thus become the scientific beacon project in the future Science City Hamburg Bahrenfeld.

29 January:
Online DESY Photon Science Users’ Meeting discusses Corona research and future facility developments

Due to the Corona pandemic, the annual Users’ Meeting for the Hamburg X-ray light sources took place completely online for the first time in 2021. The users of the DESY X-ray sources PETRA III and FLASH met from January 25 to 29 in conjunction with the European XFEL Users’ Meeting. The interest was undiminished: In total, more than 2000 participants from about 40 countries had registered for the events. In about 30 lectures, more than a dozen satellite workshops, and with almost 370 scientific posters presented, the participants exchanged information about current research results, new developments and future perspectives in numerous disciplines. Among others, an important topic was the various research projects on the corona virus carried out soon after the pandemic had started. This was partially possible thanks to the fast-track access to DESY’s X-ray sources for corona-related research and support from the DESY Strategy Fund DSF. The pandemic-proof operation of the light sources will be further expanded in the future. Furthermore, future developments of the DESY facilities were also discussed at the meeting.

March

15 March:
DGK 2021 online conference at DESY attracted very high attendance

The DGK conference is held annually by the German Crystallographic Society — the Deutsche Gesellschaft für Kristalllographie. The very high number of more than 600 participants, mainly from Germany but also from 20 other countries, registered for this year’s conference which took place online for the first time from 15-18 March 2021. The original plans were to welcome the participants by the organising institution DESY in Hamburg. However, due to the ongoing Covid-19 pandemic, a re-organisation of the whole event in close collaboration with the DGK Arbeitenkreise (AKs) as an online format was required. The DGK 2021 conference featured a lively exchange within over 25 sessions presenting 80 talks across the many fields of science that are conducted in the research field of crystallography.

26 March:
More than 250 scientists met online for the CMWS DAYS 2021

About 275 participants from 19 countries met online from 24-25 March 2021 for the CMWS DAYS 2021 to discuss the key challenges in molecular water research as well as the status and future of the Centre for Molecular Water Science (CMWS). Water is the most important liquid for our life and plays an important role in biology, chemistry, physics and geoscience with high relevance for many societal challenges such as climate, sustainability, energy, environment and health.

Despite its central role and numerous research efforts worldwide, we are still lacking a comprehensive molecular picture of the hydrogen bonding network believed to be responsible for the wealth of effects in water. The CMWS initiative brings together key experts to approach the understanding of the fundamental questions about molecular processes in water and at water interfaces systematically.

April

15 April:
Clean ideas with hydrogen

Representatives from Helmholtz centres, politics, business and NGOs met for the Helmholtz Sustainability Talk on 19 April 2021. They discussed how a hydrogen economy can be developed and built up in a sustainable and resource-saving way. Many developments in the field of energy research are not possible without basic research. Through research with the help of the X-ray light sources at DESY, for example, the group of Simone Techert has developed mini power plants that are smaller than a hair’s thickness. These cells imitate nature and produce hydrogen from sunlight and water.
LEAPS-INNOV is a project under the European Commission’s Horizon 2020 programme. It will implement the LEAPS technology roadmap and enhance partnership with industry by offering joint technological developments and advanced research capabilities for industry as collaborator, supplier and user. LEAPS, the League of Accelerator-Based Light Sources, is a European research consortium established in 2017 to foster synergies across Europe’s accelerator-based light source facilities. The goal is to identify different approaches and actions for developing a strategy for long-term industry engagement for LEAPS on a European level. Elke Plönjes from DESY is the scientific coordinator of LEAPS-INNOV.

Ultrafast X-ray Summer School 2021

The Center for Free-Electron Laser Science (CFEL) virtually hosted the Ultrafast X-ray Summer School 2021 (UXSS 2021). UXSS is an annual school on X-ray science aimed at PhD students and postdocs and was jointly organised with the PULSE institute at SLAC National Accelerator Laboratory. The programme of the school consisted of nine lectures given by distinguished scientists in the field and a virtual tour of the European XFEL with instrument presentations and guided hands-on project work in which the participants worked out a mock proposal for beamtime at the European XFEL.

White Paper of the Centre for Molecular Water Science published

More than 45 institutions from Europe and across the globe have joined in an initiative for a new research centre at DESY, unveiling the many secrets of a very common substance: water. Today, after three years of intense discussion and planning, the initiative has published a White Paper which describes the aims and tasks of the new Centre for Molecular Water Science (CMWS). Water is the key substance for life on our planet and plays a central role in numerous environmental and technological processes in our daily life. At the same time, it is one of the most fascinating chemical compounds showing many anomalies: it expands when cooled, is virtually incompressible, has an unusually high heat-storage capacity and, under certain conditions, it freezes when heated. In order to shed light on water’s mysteries, more than 300 researchers from over 20 countries came together to discuss the research agenda of the CMWS in several workshops at DESY during the last years.

Tailwind for top research in Germany

Three research centres in the Helmholtz Association have developed a joint future plan for the research conducted at the light sources they operate in Hamburg, Berlin and Dresden. The upgrades proposed in the strategy for their world-class accelerator-based facilities will strengthen Germany as a research location and promote innovations in many different fields. The strategy paper was presented on 28 June at the Helmholtz Symposium ‘Research Infrastructures of the Future’ as a component of the Helmholtz Roadmap. The future light sources of DESY, Helmholtz-Zentrum Berlin (HZB) and Helmholtz-Zentrum Dresden-Rossendorf (HZDR) complement each other and are true multi-talents in terms of exciting fundamental science and novel materials development.
29 July: DESY welcomes summer students from 25 nations
In July, almost 80 students of physics and related natural sciences started their journey through top-class research and practical experience in science at DESY. The majority of the students were participating remotely, using online tools due to the pandemic conditions while seven students had been integrated into the research groups on-site in Hamburg. The DESY summer student programme has been running for several decades and is one of the largest of its kind in Europe. The ‘Summies’ are integrated into research groups and gain invaluable experience, living the life of a scientist. Students are engaged in several fields of research, including particle physics, photon science, accelerator technology, computing and astroparticle physics. It was the first time that most of the programme was conducted in an online format, creating a new experience for everyone involved.

August

31 August: Extreme conditions in the lab — HIBEF beamline at European XFEL inaugurated
Under the leadership of the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) in cooperation with DESY, HIBEF pools equipment and expertise from various research institutions to make them available to the international scientific community. Christian Luft, State Secretary at the Federal Ministry of Education and Research, the Minister of Science of Schleswig-Holstein, Karin Prien and the State Secretary for Science, Research, Equalities and District Authority of the Free and Hanseatic City of Hamburg, Dr. Eva Gumbel, inaugurated the Helmholtz International Beamline for Extreme Fields (HIBEF) at the European XFEL. The beamline is part of the High Energy Density (HED) experimental station at European XFEL, enabling deep insights into the structure of materials and ultra fast natural plasma-physical processes.

September

8 September: Barbara Mez-Starck Prize for Melanie Schnell
DESY researcher Melanie Schnell received this year’s International Dr. Barbara Mez-Starck Prize. The DESY Lead Scientist at Photon Science was honoured for her outstanding studies of structural changes in water complexes with increasing amounts of water molecules as well as for her pioneering investigations of enantiomers and the separation of these chirally different molecules, as the jury announced in Ulm. The award ceremony took place on 29 August during the 27th Colloquium on High-Resolution Molecular Spectroscopy in Cologne.

20 September: Opening of Start-up Labs Bahrenfeld
Start-ups and established companies in the field of physics and biophysics have found a new home in Western Hamburg. Start-up Labs Bahrenfeld, a project jointly managed by DESY, the University of Hamburg and the City of Hamburg, is the new place for science entrepreneurship on DESY’s research campus. The innovation centre for deep-tech start-ups will also enhance the profile of the future Science City Bahrenfeld. The Start-up Labs were officially opened on 20 September with laboratories, workshops, offices and meeting rooms, covering an area of 2700 square metres. DESY Photon Science start-ups are among the first tenants.

27 September: ‘Wissen vom Fass’; This year’s event was launched purely digital
In ‘Wissen vom Fass’ (Science on tap), scientists from the University of Hamburg and DESY answered exciting questions from the public about different research topics. Unlike previously, this year’s popular lectures were not held in various Hamburg bars and pubs due to the pandemic. Instead, five videos were available for interested DESY followers.

29 September: PETRA IV Workshops
In a series of workshops, the science case and technical requirements for the ultralow emittance storage ring PETRA IV was discussed with experts and future users from many fields of science. The PETRA IV Scientific Instrumentation Proposal (SIP) submission process for the future PETRA IV instrumentation has been finalised at the end of 2020. Since then, there has been a technical and scientific review of the SIPs. The PETRA IV project team and DESY management have developed the future PETRA IV beamline portfolio based on the SIPs, their reviews and discussions with DESY partners and collaborators. In this workshop the current status of the PETRA IV beamline portfolio was presented and discussed with the user community and all SIP proposers.

October

13 October: AttoChem Workshop 2021
The 2nd Annual Workshop of the European Cooperation in Science and Technology (COST) action, AttoChem was organised by CFEL/DESY online from 13–15 October 2021. The AttoChem network coordinates experimental and theoretical efforts to exploit the large potential of attosecond techniques in chemistry with the aim of designing new strategies for the control of charge migration in molecules by acting directly on the attosecond time scale. This ability will also be used to selectively break and form chemical bonds, thus opening new avenues for the control of chemical reactions. The results of the action are expected to have a significant impact in several areas of chemistry, such as photovoltaics, radiation damage, catalysis, photochemistry or structural determination.

November

1 November: DESY scientist Sadia Bari becomes professor at the University of Groningen
DESY has sealed its first joint professorship agreement with a university outside of Germany: Research group leader Sadia Bari has been appointed associate professor equivalent to German “W2” level at the University of Groningen in the Netherlands to work in the field of soft X-ray research on the dynamic structure of isolated and solvated single biomolecules. Bari returns to her academic roots: after studying and doing her PhD at the University of Groningen herself, she will now teach physics to undergraduate and graduate students there.

21 November: DESY distinction for Albrecht Wagner and Jochen Schneider
At this year’s DESY Science Day, Albrecht Wagner and Jochen Schneider were honoured with DESY’s Golden Pin of Honour. They had been DESY pioneers in a very special time for the centre: Albrecht Wagner was Chairman of the DESY Board of Directors from 1999 to 2009, Jochen Schneider was DESY Director for Research with Photons from 2000 to 2007. As head of the Hamburg Synchrotron Radiation Laboratory (HASYLAB) since 1993, Jochen Schneider shaped the strategic expansion of Photon Science at DESY. In addition to setting the course for PETRA III and the European XFEL, Jochen Schneider is also considered the spiritual father of the Center for Free-Electron Laser Science (CFEL) which was launched together with the University of Hamburg and the Max Planck Society.
<table>
<thead>
<tr>
<th>Life sciences</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Massive X-ray screening identifies drug candidates against SARS-CoV-2</td>
<td>18</td>
</tr>
<tr>
<td>Hole in the wall</td>
<td>20</td>
</tr>
<tr>
<td>Unlocking the molecular mechanism of glycine reuptake inhibition</td>
<td>22</td>
</tr>
<tr>
<td>From microanatomy to spatial chemistry</td>
<td>24</td>
</tr>
<tr>
<td>Insights into pH-responsiveness of mRNA delivery systems</td>
<td>26</td>
</tr>
<tr>
<td>New opportunities to combat</td>
<td>28</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nano and materials science</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>The new gold standard in single-particle X-ray imaging</td>
<td>30</td>
</tr>
<tr>
<td>Unravelling the non-classical emergence of CoO nanoassemblies</td>
<td>32</td>
</tr>
<tr>
<td>Fighting a greenhouse gas</td>
<td>34</td>
</tr>
<tr>
<td>What determines the elastic properties of teeth?</td>
<td>36</td>
</tr>
<tr>
<td>Unexpected twist of catalytic nanoparticles</td>
<td>38</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Electronic and magnetic structure</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>New pathway to harnessing the sun for a clean energy future</td>
<td>40</td>
</tr>
<tr>
<td>One zeptosecond for a quantum beat</td>
<td>42</td>
</tr>
<tr>
<td>Making monopoles visible</td>
<td>44</td>
</tr>
<tr>
<td>Ultrafast THz Ohmmeter at extreme temperatures</td>
<td>46</td>
</tr>
<tr>
<td>Spin fluctuations unfreeze on cooling</td>
<td>48</td>
</tr>
<tr>
<td>Imaging the electronic states of quantum materials</td>
<td>50</td>
</tr>
<tr>
<td>Twisting magnetisation with light</td>
<td>52</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Structure and structural dynamics</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Dynamical heterogeneity in a cooked egg</td>
<td>54</td>
</tr>
<tr>
<td>Unusual melting in diamond</td>
<td>56</td>
</tr>
<tr>
<td>Structural dynamics of laser-induced shock waves</td>
<td>58</td>
</tr>
<tr>
<td>Probing the interior of water-rich planets</td>
<td>60</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Quantum optics, atomic and molecular dynamics</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Zeptoseconds across the molecule</td>
<td>62</td>
</tr>
<tr>
<td>Exploring astrochemistry with ultrafast XUV pulses at FLASH</td>
<td>64</td>
</tr>
<tr>
<td>An ultrafast photoprotection mechanism against radiation damage</td>
<td>66</td>
</tr>
<tr>
<td>Attoseconds on a chip</td>
<td>68</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Science of laser and X-rays sources — methods and developments</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Chirping FEL pulses</td>
<td>70</td>
</tr>
<tr>
<td>Towards ultimate time resolution in speckle correlation dynamics</td>
<td>72</td>
</tr>
<tr>
<td>New XFEL techniques to understand rapid synthesis at high-pressures and dynamics of planetary interiors</td>
<td>74</td>
</tr>
<tr>
<td>Automatic differentiation is capturing X-ray images</td>
<td>76</td>
</tr>
<tr>
<td>A microscope with soft X-ray spectroscopy eyes</td>
<td>78</td>
</tr>
<tr>
<td>First determination of the bulk spin polarisation of magnetite</td>
<td>80</td>
</tr>
</tbody>
</table>
Massive X-ray screening identifies drug candidates against SARS-CoV-2

One promising drug compound is being further evaluated

While vaccines offer great relief to the burden that the SARS-CoV-2 virus has put on global health and economics, the appearance of more resistant coronavirus mutants has demonstrated that additional treatment options with drugs are desperately needed. Among other screening techniques, X-ray crystallography is a powerful tool in modern drug discovery as it sheds light on how exactly a drug acts on its target protein — with atomic resolution. As a response to the current Covid-19 pandemic, we combined drug-repurposing with high-throughput X-ray crystallography. The goal was to identify new compounds of known active substances, suitable drugs that can inhibit a key enzyme of SARS-CoV-2, its main protease (Mpro), and thus can stop the virus from replicating. 29 compounds were found unambiguously binding to Mpro, with two of them showing strong antiviral activity in cell-cultures.

The process of drug development usually starts with a compound screening where hundreds to thousands of different molecules are tested for their interaction with a selected target protein. Most common such screens are performed with high-throughput biochemical or cell-based assays. As an outcome of such a screening ideally several compounds are identified that bind to the target protein or can even inhibit its biological function. These hit compounds from the initial screening can then be chemically modified in order to improve their inhibitory properties. The commonly applied biochemical and cell-culture-based screening techniques provide extremely high-throughput, however, they do not yield any 3D information about the interaction and location of the compound binding to the target protein.

X-ray crystallography screening has a clear advantage over other techniques, since it does not only show whether a compound binds to the target protein but at the same time also provides detailed information how these molecules interact with the target protein on the atomic level. Because the effort of performing such an X-ray screening is quite high compared to other methods, it is typically conducted with a smaller number of so-called fragments. These molecules of lower chemical complexity are usually not able to bind to the target very specifically and tightly. If several fragments are identified to bind to the drug target, they may be linked or build the starting point for a more complex chemical synthesis.

For our study, we employed a different approach of X-ray screening. Instead of using only fragments, we tested 5935 unique compounds listed in two drug-repurposing libraries for binding to the important SARS-CoV-2 target protein. These libraries contain drugs that are either already approved for use or have been tested in clinical and preclinical studies. This approach offers the advantage that identified suitable compounds typically have high bio-availability at the site of drug action. Moreover, in the best cases, safety and other data are already available, potentially speeding up the path to an approved Covid-19 pharmaceutical.

Shortly after the SARS-CoV-2 outbreak became pandemic in 2020, we formed a consortium with specialists from several fields, including computational chemists, structural biologist and virologists all coming mainly from the Hamburg area. Our initial search focused on the main protease Mpro, a protein that is essential for the replication of the virus in the human host cell [1]. We co-crystallised this protease with 5939 individual compounds from the two drug-repurposing libraries. X-ray diffraction experiments of these crystals were performed at the macromolecular crystallography PETRA III beamlines P11 from DESY, as well as P13 and P14 from EMBL. Within a month we collected about 8000 datasets from almost 7000 crystals. In parallel we established a ‘data analysis pipeline’ to process all data and to identify all compounds that bind to the SARS-CoV-2 Mpro.

From this screening effort we identified 43 compounds binding to Mpro and could clearly describe the interaction between the compound and the target protein in 29 cases. These 29 molecules bind at various sites across the protein that functions as a dimer with two identical sub-units (Fig. 1a). The majority of molecules bind at the active site of the protein, which uses proteins to fulfill its function. Moreover, we observed a variety of chemical interaction that were used by these molecules (Fig. 1b).

Subsequently, the compounds binding to Mpro were tested for their inhibition of the protein function. Cells infected with SARS-CoV-2 were treated with these compounds. In fact, one compound, calpeptin, that has been previously shown to be active against the SARS-CoV-2 main protease [2], showed antiviral activity in the nanomolar range. This compound is currently tested further in preclinical studies to evaluate its potential to treat SARS-CoV-2 infections.

The infrastructure and tools developed within this project are now available for X-ray screening activities related to other SARS-CoV-2 infection-relevant proteins and also for targeting further viruses that have the potential for epidemiological outbreaks.

Author contact: Alke Meents, alke.meents@desy.de

References

Original publication

DOI: 10.1126/science.1776976

Figure 1 X-ray screening identifies active site and allosteric inhibitors of SARS-CoV-2 main protease’, Science 372, 642–646 (2021).

DOI: 10.1126/science.1776976

Figure 2 The potent inhibitor Calpeptin (blue sticks) binds tightly to the active site of Mpro (grey surface). The X-ray structure of Mpro and calpeptin reveals that the inhibitor uses key pockets (green and yellow) in the active site of the protein for binding. Further amino acids that interact with calpeptin are shown as grey sticks and are labelled (Credit: Partly from original publication licensed under CC BY 4.0)
Over the past two years, all eyes have been focused on the SARS-CoV-2 pandemic. However, an often-overlooked infectious disease, tuberculosis, has stalked society for ages. Regarded as a disease that has co-evolved with human-kind, tuberculosis still kills ~1.5 million people every year. Mycobacterium tuberculosis, the pathogen causing this deadly disease, is well protected by a cell envelope that surrounds it like the ramparts of a fortress. To transport various molecules across this cell envelope, the pathogen uses intricate nanomachines called type VII secretion systems. Through a combination of genetics, biochemistry and cryo-electron microscopy, we unveiled the first intact structure of such a machinery from Mycobacterium tuberculosis. Unravelling these systems enables the identification of potential weak spots in the mycobacterial fortress and can aid in the development of better therapeutic.

Bacteria can be roughly divided into two categories: Gram-positive bacteria which have a single membrane and Gram-negative which have two membranes. Mycobacteria, including the causative agent of TB, Mycobacterium tuberculosis (Mtb), are rod-shaped bacteria which, although genetically classified as Gram-positive, are surrounded by two membranes. However, the composition of their second membrane, the mycobacterial outer membrane (MOM), is vastly different from the Gram-negative outer membrane with the main constituents being long-chain fatty acids called mycolic acids [2]. The MOM serves as an efficient permeability barrier, allowing Mtb to persist inside host cells for long periods of time while also conferring intrinsic resistance to many antibiotics. The MOM does, however, need to allow the transport of molecules, such as export of extracellular proteins or uptake of nutrients, across it. In mycobacteria, the majority of secreted proteins are transported by a group of unique protein transport machineries, called type VII secretion systems (T7SSs) with up to five different systems called ESX-1 to ESX-5 [2]. Research in the last decade has demonstrated that T7SSs are among the most important tools used by Mtb for both growth and disease propagation. The decisive mutation which leads to the attenuation of the current live vaccine strain, M. bovis BCG, is a (partial) deletion of the ESX-1 system, further underscoring its importance.

Although we previously demonstrated that four T7SS components form a six-sided star-shaped complex, high-resolution structural information and mechanistic insights could not be determined due to the inherent instability of the complex [3]. Building on our previous work, we succeeded in determining the high-resolution structure of the ESX-5 machinery from Mtb, a system that is essential for nutrient uptake and immunomodulation. Cryo-EM data were collected at the Cryo-EM Facility at CBSS.

This large 2.32 MDa inner membrane complex is assembled as a trimer of dimers with 5 components assembling into a 33-subunit machinery displaying a 6.6:12.6:3 stoichiometry (Fig. 1a,b). The machinery is anchored in the bacterial inner membrane via a staggering 165 domains. Whereas 4 of the components, i.e. EccB/EccC/EccD/EccE, have previously been shown to interact, our analysis is the first to show and structurally define a stable interaction of the fifth component, the MycP protease. A MycP trimer caps a central triangular chamber, formed by EccB subunits on the periplasmic side, with the transmembrane domains anchored towards the edge of the machinery. The proteolytic sites of MycP are directed towards the inside of this chamber, suggesting this to constitute the point where secreted substrates are being cleaved prior to their secretion through the MOM. Critically, in our analysis we were also able to solve the structure of T7SS5 machinery that lacked the protease. Without MycP, which anchors the central periplasmic assembly to the edges of the transmembrane area, the EccC assembly was completely disorganised while the whole complex displayed increased flexibility and heterogeneity, confirming previous biochemical evidence [4] (Fig. 1c).

As opposed to other specialised secretion systems, T7 secretes proteins in a folded state, suggesting that a rather large pore is required. Our work outlines this central secretion conduit to high resolution for the first time, highlighting an opening of ~45 Å in diameter. The translocation pore is sealed by the transmembrane domains of the EccC component, an ATPase containing 4 separate hydrolysing domains. As the complex contains 6 copies of EccC, the entire machinery encodes a total of 24 domains capable of hydrolysing ATP which potentially create motion in the process. Furthermore, we have succeeded in characterising two distinct structural snapshots of the flexible EccC ATPase, likely representing separate secretion states (Fig. 2).

Our results are a huge step forward in understanding T7SSs and Mtb itself. The work suggests a previously undisclosed mechanism of protein transport and provides a structural scaffold to aid in the development of novel drugs against this major disease-causing pathogen.

Author contact: Catalin Bunduc, catalin.bunduc@cssb-hamburg.de

Science Highlights | Life sciences | 21

References

Original publication

Catalin M. Bunduc*,†, Dirk Fahrenkamp*,‡, Edith N. G. Houben*,§ and Thomas C. Marlovits*§

*Institute of Structural and Systems Biology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
†Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
‡Leibniz-Institut für Molekulare Infektionsforschung (IMI), Jena, Germany
§Molecular Microbiology Section, Amsterdam Institute of Moleculare and Life Sciences, VU University Amsterdam, Amsterdam, The Netherlands

1. Centre for Structured Systems Biology (CSSB) at DESY, Hamburg, Germany
2. Centre for Structured Systems Biology (CSSB) at DESY, Hamburg, Germany
3. Centre for Structured Systems Biology (CSSB) at DESY, Hamburg, Germany
4. Centre for Structured Systems Biology (CSSB) at DESY, Hamburg, Germany
5. Centre for Structured Systems Biology (CSSB) at DESY, Hamburg, Germany

1. Centre for Structured Systems Biology (CSSB) at DESY, Hamburg, Germany
2. Centre for Structured Systems Biology (CSSB) at DESY, Hamburg, Germany
3. Centre for Structured Systems Biology (CSSB) at DESY, Hamburg, Germany
4. Centre for Structured Systems Biology (CSSB) at DESY, Hamburg, Germany
5. Centre for Structured Systems Biology (CSSB) at DESY, Hamburg, Germany

1. Centre for Structured Systems Biology (CSSB) at DESY, Hamburg, Germany
2. Centre for Structured Systems Biology (CSSB) at DESY, Hamburg, Germany
3. Centre for Structured Systems Biology (CSSB) at DESY, Hamburg, Germany
4. Centre for Structured Systems Biology (CSSB) at DESY, Hamburg, Germany
5. Centre for Structured Systems Biology (CSSB) at DESY, Hamburg, Germany

1. Centre for Structured Systems Biology (CSSB) at DESY, Hamburg, Germany
2. Centre for Structured Systems Biology (CSSB) at DESY, Hamburg, Germany
3. Centre for Structured Systems Biology (CSSB) at DESY, Hamburg, Germany
4. Centre for Structured Systems Biology (CSSB) at DESY, Hamburg, Germany
5. Centre for Structured Systems Biology (CSSB) at DESY, Hamburg, Germany

1. Centre for Structured Systems Biology (CSSB) at DESY, Hamburg, Germany
2. Centre for Structured Systems Biology (CSSB) at DESY, Hamburg, Germany
3. Centre for Structured Systems Biology (CSSB) at DESY, Hamburg, Germany
4. Centre for Structured Systems Biology (CSSB) at DESY, Hamburg, Germany
5. Centre for Structured Systems Biology (CSSB) at DESY, Hamburg, Germany
Unlocking the molecular mechanism of glycine reuptake inhibition

Unravelling the structure of glycine transporter paves the way for the development of novel psychiatric therapeutics

Crystal structure determination of human membrane proteins is usually limited by the availability of sufficiently sized crystals and by the fact that crystal quality deteriorates during data collection with X-rays. To overcome this limitation, we have devised a serial synchrotron crystallography (SSX) approach for collecting data from many micrometre-sized crystals and applied it to determine the structure of the glycine transporter 1 (GlyT1). GlyT1, a protein in the neuronal cell membranes, is responsible for the uptake of neurotransmitter glycine into neurons, thereby, terminating glycine-mediated signalling. Increasing glycine levels in synapses by inhibition of GlyT1 is a strategy to treat schizophrenia.

Schizophrenia is a debilitating psychiatric disorder with no cure. Over the past twenty years, many pharmaceutical companies and academic research groups have focused on glycineergic signalling for a treatment. GlyT1 is a membrane transport protein that regulates neuronal activity in the brain mediated by the amino acid glycine as a neurotransmitter. Glycine can both be activating or co-agonist of excitatory glutamate receptors and inactivating as the agonist of inhibitory glycine receptors. GlyT1 terminates glycineergic signalling by mediating glycine reuptake from the synapse back into the neurons. Selective inhibition of GlyT1 prolongs glycineergic signalling, and it has been extensively studied in the search for an effective treatment for a broad range of central nervous system disorders, including schizophrenia [1]. Clinical studies have found several potent small-molecule inhibitors for GlyT1 that alleviate cognitive impairments in schizophrenia. However, a successful drug candidate has yet to come [2].

To elucidate the structure-based mechanism of inhibition, we set out to determine the GlyT1 structure with one of its most advanced inhibitors from a Roche phase III drug program [3]. Investigating the transporter in a clinically relevant inhibition-state conformation helps to re-evaluate the efforts for developing selective inhibitors and devising new strategies to target the glycine reuptake transporter.

To enable crystallisation of GlyT1, we combined several approaches to stabilise this difficult membrane protein target; among others, we generated stabilising molecular chaperones as synthetic single-domain antibodies, so-called sybodies, against a unique cell surface-exposed binding site of GlyT1 with the goal to address its inhibition state [4]. Employing lipid-based crystallisation methods, we obtained microcrystals (< 10 µm) of GlyT1 in complex with the small-molecule inhibitor and the sybody (Fig. 1). The microcrystals would not individually suffice to acquire a complete diffraction data set. Therefore, we established an SSX approach that allowed us to determine the first structure of a human membrane protein from hundreds of microcrystals.

Diffraction data was collected using serial helical line scans [5] on the MD3 diffractometer (ARINAX, Moirans, France) installed on the EMBL PI4 beamline at the PETRA III storage ring. A microfocus beam with a total photon flux of 1.3 × 10^{10} photons per second at the sample position (Fig. 1) was used. We carried out a total of 514 two-dimen- sional (2D) helical scans on 409 cryogenically cooled loops carrying microcrystals of GlyT1. This strategy resulted in the collection of partial ‘mini datasets’, comprising 3–20 consecutive diffraction images, extracted from a total of about 1.36 million frames acquired. We merged reflection data from 207 mini datasets, corresponding to a total of 3400 oscillation patterns, whereby outliers were identified and rejected based on their correlation coefficient with the rest of the data being lower than 0.7 — yielding a complete dataset with a resolution of 3.4 Å, enabling us to determine the 3D structure of GlyT1 (Fig. 2).

The GlyT1 structure reveals the selective inhibitor-bound state, and importantly, we found it to adopt an inward-open conformation blocked by the inhibitor. The data unveil a dual nature of non-competitive inhibitors of functional transport also exhibiting competitive binding to the substrate binding site of glycine. The structure reveals a unique binding mode for the small-molecule inhibitor and depicts molecular determinants of the selectivity. The sybody is also highly selective for the inhibited, inward-open conformation of GlyT1. Recent efforts to engineer antibodies as ‘brain shuttles’ [6] crossing the blood–brain barrier and delivering an inhibition-state-specific sybody represent an alternative approach to small-molecule inhibitors of GlyT1. Our results define a mechanism of inhibition in neurotransmitter transporters in general that is elegant in its simplicity, and powerful in its explanatory properties. It provides blueprints for further development of small molecules and antibodies as selective inhibitors.

Author contact: Azadeh Shahsavari, ash@mbg.au.dk
Thomas R. Schneider, thomas.schneider@embl-hamburg.de
Roger J. P. Dawson, rogerdawson@linkstertherapeutics.com
Paul Nissen, pnngenbg@uk

References

Original publication

Azadeh Shahsavari1,2, Peter Sticher1, Gikl Baunekron1, Iwan Zimmermann1, Martin Siegrist2, Wolfgang Guba3, Emmanuel Pinard3, Stéphane Sinning4, Markus A. Seeger5, Roger J. P. Dawson6 and Paul Nissen1

1. Danish Research Institute of Translational Neuroscience (SANITIME), Nordic EMBL Partnership for Molecular Medicine, Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
2. European Molecular Biology Laboratory (EMBL) c/o DESY, Hamburg, Germany
3. Roche Pharma Research and Early Development, Therapeutic Modalities, Roche Innovation Centre, Basel, Switzerland
4. Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
5. Linkser Therapeutics AG, Zurich, Switzerland
6. Department of Forensic Medicine, Aarhus University, Aarhus, Denmark
Integrating chemical imaging with unique synchrotron radiation-based microtomography (SR-µCT) techniques developed at beamline P14 at PETRA III [1] increased the resolution almost 20-fold over previous approaches. Our correlative chemical and anatomical 3D data allowed us, for the first time, to describe ecological niches within the ‘ecosystem earthworm’ for microbes and nematodes.

Our cultivation-independent chemo-histo-tomography (CHEMHT) approach advanced the study of in situ metabolic interactions among symbiotic/parasitic organisms in their natural settings. Key for imaging metabolites in specific niches within the earthworm was our integration of mass spectrometry imaging (MSI) with a detailed multimodal micro-tomography (µCT) body atlas of the same worm (Fig. 1). MSI is a powerful tool for deciphering the chemical nature of microbial and eukaryotic metabolism and their interactions to be discovered in an animal collected directly from the field. In addition, our high-resolution MSI revealed increased resolution and detail gained with SR-µCT imaging, microscopy, and tomography for biological applications on EMBL beamline P14 at PETRA III [Conference Presentation], Proc. SPIE 11113, Developments in X-Ray Tomography III, 1111307 (2019). 2. J. Soltwisch, R. Kettling, S. Vens-Cappell, M. Wiegelmann, J. Müthing and K. Draversen, E. ‘Mass spectrometry imaging with laser-induced postionization’, Science 348, 211–215 (2015). 3. M. Kampaun, S. Heine and G. Spengler, Atmosphere pressure MALDI mass spectrometry imaging of tissues and cells at 1.4-μm lateral resolution, Nat. Methods 14, 90–96 (2017).

Global ecosystems depend on small critters — decomposers that work the soil, pollinators that sustain the plants — just as much as they depend on their microbial partners. In our study we focused on earthworms, key organisms that substantially shape terrestrial ecosystems, from our backyards to tropical rainforests. Combining high-resolution tomography with metabolite imaging, we were able to resolve the metabolic interactions between the invertebrate host, the earthworm, its symbiotic bacteria and tissue parasites at unprecedented detail.

Understanding the anatomical and cellular features that might change within an animal, the former can reveal certain functions, from metabolic immune responses to digestive processes along the gut. Extending common histomicroscopy into CHEMHT opens new avenues for label-free correlative imaging. Future technical developments of the presented workflow being developed in cooperation with beamline P05 could integrate phase-contrast SR-µCT, allowing for quantitative 3D imaging of tissues without contrasting agents at nanometre scales. With continued improvements in MSI measurement speed, serial metabolite imaging in combination with phase-contrast SR-µCT could facilitate a lossless anatomic and metabolic 3D model of the same organism in the near future.

Author contact: Manuel Liebeke, mliebeke@mpi-bremen.de Grace D’Angelo, gdangelo@mpi-bremen.de Benedikt Geier, bgeier@mpi-bremen.de

References

Original publication
‘Connecting structure and function from organisms to molecules in small-animal symbioses through chemo-histo-tomography’, PNAS 118, e2023777118 (2021). DOI: 10.1073/pnas.2023777118

Benedikt Geier1, Joanna Detjen1, Bernhard Rathensteiner2, Maxim Polikarpov3, Harald R. Grauber-Vodicka1 and Manuel Liebeke1

1. MaxPlanck Institute for Microbiology, Bremer, Germany
2. MALDI Imaging Lab, University of Bremen, Bremen, Germany
3. SNSB – The Bavarian State Collection of Zoology, Munich, Germany
4. European Molecular Biology Laboratory (EMBL), c/o DESY, Hamburg, Germany

Figure 1
A chemo-histo-tomography atlas of a worm. This multimodal 3D imaging atlas of the near end of an earthworm was compiled from five µCT datasets and four tissue sections, each imaged with mass spectrometry imaging, fluorescence and bright-field microscopy.

Figure 2
Bacterial cells within organs have unique molecular fingerprints. a) The 3D model shows the surface reconstruction of the nephridia, including the bacteria-containing ampullae of the tissue block between tissue sections s1 and s2. b) The ion images of whole tissue sections show an unidentified metabolite. (m/z 1.116 833 Da), with the highest co-localisation to MALDI-MSI. c) FISH microsphere signals showing the presence of bacteria. Scale bars in b) and c) 250 µm.

Figure 3
Use of the 3D CHEMHT atlas to guide high-resolution imaging of the interactions between earthworm and parasitic nematodes. a) µCT model with the tissue volume (v1) imaged with high-resolution SR-µCT. b) Issu face 3D rendering of the nematodes (blue) and a virtual sectioning plane (xy) through the SR-µCT image stack (v1). c) Overlay of the µCT and SR-µCT (magenta outline, xy plane) to show the increased resolution and detail gained with SR-µCT. d) Virtual plane through the SR-µCT data shows sections of nematodes in the cysts (magenta outlines): a) Three-dimensional renderings of four nematodes of which two were surrounded by a homogenous deposit (cyan cloud). f) High-resolution MSI shows distribution of the metabolite spermidine (m/z 146.1646). |CH2N4+H2O| nc: nematode cyst; n: nematode; dep: deposit; bt: brown body tissue; gm: granular mass. Scale bars in c) 500 µm and in d) 50 µm.
Insights into pH-responsiveness of mRNA delivery systems

A closer look to develop a model for the design of future mRNA drug products

RNA-based nanomedicines have proven to be a promising new class of drugs, with their broad field of potential applications ranging from protein substitution, over tumour immunotherapy, up to the recent success of being the first approved Covid-19 vaccines. The basic concept for all mRNA drugs is to deliver protein-encoding mRNA, like tumour or virus antigens, into target cells in order to be transcribed into the protein and for example induce antitumoral responses. To make intravenous application of mRNA possible, formulations are required that protect the mRNA from degradation through the ubiquitous nucleases, deliver it to the target site and promote cellular uptake and translation. Non-viral lipid-based delivery vehicles have demonstrated to be suitable for this purpose.

While considerable effort has been spent on efficacy studies and general physicochemical characterisation of RNA nanomedicines, a lack of insight into the internal structures, their transformation in relation to environmental changes and the implications thereof still remains. To provide a successful therapy, mRNA nanomedicines need to overcome several hurdles. The mRNA needs to be protected from degradation and delivered into its target cells, followed by endosomal release and expression of the protein. The administration of pure mRNA does not fulfill this requirement. Therefore, lipoplexes, lipid-based nanoparticulate delivery systems for the mRNA, have been introduced which have been improved throughout the years.

Basically, all of these approaches are based on the interaction of mRNA with cationic or ionisable lipids, resulting in complexation. Ionisable lipids are thought to be advantageous over their non-ionisable counterparts, as their pH-dependent charge can be used for reducing the toxicity of cationic lipids during systemic circulation while also facilitating a better release from the endosome [1,2]. For these ionisable lipids, the exact pH at which they change their charge has been recognised as essential for improved efficacy [3].

The classic tool to determine their pH-responsivity is fluorescence-based, where the quantum yield of the dye bound to the lipids sensitively changes with their charge. However, while straightforward, this approach has some limitations. It does not provide direct structural information from inside the lipoplexes or information on the binding state of the mRNA to the lipid matrix. Such information may be valuable for the optimisation of the systems for a given setting, though.

Previous research in our group has shown that small-angle X-ray scattering (SAXS) can be a useful tool to obtain direct and quantitative structural insight into lipoplexes [4]. Using model systems, we were able to determine the binding stoichiometry between the mRNA and the lipids and to reveal the balance of attractive and repulsive interactions between them. In this study, we utilised similar systems — comprising both ionisable and non-ionisable cationic lipids — in order to investigate the effect of pH variation on their internal organisation. The aim was to elucidate pH-dependent coherencies between structural and biological processes during delivery, endosomal uptake and release in pH-responsive lipoplexes.

SAXS curves of a variety of lipoplex systems were recorded over a pH range of 4.5–8.0 at the EMBL beamline P12 at PETRA II. Changes in the scattering curves were determined for different lipids present at various molar fractions and N/P ratios (ratio of ionisable lipid to RNA) inside the formulations. Careful analysis of these curves proved that the investigated systems have a lamellar organisation and allowed an accurate determination of pH-dependent structural changes concerning layer spacing and long-range particle order (Fig. 1). For further analysis, the layer spacing was investigated in relation to the pH level. The values for the systems comprising ionisable lipids changed in a sigmoidal manner, allowing the fitting of an appropriate mathematical model from which the pH level, around which the internal structure of each lipoplex changed, was determined. This ‘conformational pH’ could not only be affected by the selection of the ionisable lipid but also by the N/P ratio. For comparison, the systems were investigated by a well-established assay utilising the fluorescent dye TNS to measure the lipid ionisation constant pKa. When comparing the pH-dependent structural changes observed in the SAXS measurements to the TNS assay, the calculated pK values showed a systematic shift to higher values for the fluorescence assay (Fig. 2). Therefore, the structural changes depend not only on the protonation state of the ionisable lipid, but rather the overall lipoplex assembly has to be considered. A further noteworthy information in this context — both measurements indicated that the conformational transition point also depends on the fraction of mRNA inside the membranes, where a monotonous change as a function of the N/P ratio was determined. Thus, the conformational transition points seem to be dependent on three factors: the type of the ionisable lipid, its molar fraction within the particles and the N/P ratio.

Overall, the results from this study provide a contribution to a better understanding of the structural and functional coherencies inside mRNA nanoparticles comprising ionisable lipids. Such understanding may help to assemble mRNA delivery systems with fine-tuned responsiveness to changes of pH in the local environment to obtain optimised expression in a given target.

Author contact: Peter Langguth, langguth@uni-mainz.de

References

Original publication

Lukas Uebbing, Anke Züller, Christian Sawern2, Martin A. Schröter3, Clement E. Blanchet4, Dmitrii Ikveiz7, Sinisa Rambold7, Dan Peer5, Ugar Sahin6,1, Heinrich Haas2 and Peter Langguth1

1. Department of Pharmaceutics and Biopharmaceuticals, Institute of Pharmaceutical and Biomedical Sciences, J. Gutenberg University Mainz, Germany
2. European Molecular Biology Laboratory (EMBL) in Goldegg, Germany
3. Laboratory of Precision NanoMedicine, Schumacher School for Biomedical and Cancer Research, Tel Aviv University, Tel Aviv, Israel
4. BioNTech, BioNTech Pharmaceuticals Center, Mann, Germany
5. TIRON - Translational Oncology at the University Medical Center, J. Gutenberg University Mainz, Germany
6. Research Center for Immunotherapy (RCI), University Medical Center at the J. Gutenberg University Mainz, Germany
7. Department of Pharmacology, University Medical Center at the J. Gutenberg University Mainz, Germany

Figure 1
Comparison of the formulations’ conformational transition point and lipid pH for samples comprising the ionisable lipid DOXOMA as determined by SAXS (red) and TNS (black). Dashed lines are meant as a guide to the eye and do not represent fitting of a physical model (Copyright: 2020 American Chemical Society).

Figure 2
SAXS measurements of pH-responsiveness (topplexes). a) Sketch of the sample preparation for measurements at the EMBL beamline P12 at PETRA II. b) Scattering curves with characteristic Bragg peaks of a lipoplex system comprising the ionisable lipid DOXOMA over a pH range from pH 4.5 (bottom) to pH 8.0 (top). c) Illustration of the derived model describing the pH-responsiveness of these systems concerning inter-lipayer spacing (d-spacing) and particle order (Copyright: 2020 American Chemical Society).

X-ray scattering (SAXS) can be a useful tool to obtain direct and quantitative structural insight into lipoplexes [4]. Using model systems, we were able to determine the binding stoichiometry between the mRNA and the lipids and to reveal the balance of attractive and repulsive interactions between them. In this study, we utilised similar systems — comprising both ionisable and non-ionisable cationic lipids — in order to investigate the effect of pH variation on their internal organisation. The aim was to elucidate pH-dependent coherencies between structural and biological processes during delivery, endosomal uptake and release in pH-responsive lipoplexes.
New opportunities to combat tuberculosis

Tuberculosis is one of the top ten causes of death worldwide, infecting about one-quarter of the world’s population. Although it is treatable, the rise of multidrug-resistant tuberculosis poses a major threat to global health security and has been declared by the World Health Organisation as a global health emergency. In addition, reduced access to diagnosis and treatment during the Covid-19 pandemic is expected to dramatically increase the number of tuberculosis infections. This will set global efforts to tackle the disease back several years [1]. With this study, we pave the way to future research aimed at the development of novel drugs and vaccines against tuberculosis.

Tuberculosis is caused by infection with Mycobacterium tuberculosis: a bacterium that infects human lungs and other organs by using complex molecular machinery; these include protein complexes known as type VII secretion systems, which enable M. tuberculosis to release molecules into its host, disarming the immune system and ultimately inducing the disease [2]. Up to five such secretion systems, labelled ESX-1 to ESX-5, are found among M. tuberculosis and other closely related mycobacteria, many of which are pathogenic. The different ESX systems have different functions and do not only play a role in virulence but are also important for the viability of mycobacteria [2].

Our group at European Molecular Biology Laboratory (EMBL) Hamburg is using high-resolution structural biology methods to study mycobacterial proteins, including ESX systems. In this study, we determined the molecular structure of the mycobacterial secretion system ESX-5 to a resolution of 3.4 Å (Fig. 1,2). Our structure of the ESX-5 secretion complex provides deep insight into the major suicide gate that separates the inner of these bacteria from the outer host environment. Opening this gate allows the pathogen to transport its proteins into the human cell and to establish an infection. Ultimately, we can use this structure as a toolbox with literally thousands of potential drug targets. This will open an entirely new field of studies on tuberculosis.

Determining the molecular structure of ESX-5 was particularly challenging because of its large size, complexity and dynamics. No single structural biology method could provide the full picture. While the resolution of the cryo-EM map allowed building a detailed model in the transmembrane region and in the cytoplasmic region close to the membrane, the resolution of the cryo-EM map alone was not sufficient in the periplasm and distal cytosolic side due to the dynamic nature of the complex. Therefore, we complemented the cryo-EM data with an X-ray crystallography structure of a single protein component obtained at the EMBL beamline P13 at PETRA III, homology models and crosslinking mass spectrometry results and combined the data using the software ‘Assemble’, developed at EMBL Hamburg. This approach enabled us to create a coherent model of the ESX-5 complex.

The level of detail achieved exceeds by far the results of our previous study from 2017 in which we described the overall dimension, stoichiometry and shape of the ESX-5 secretion machinery based on negative stain electron microscopy, small-angle X-ray scattering (SAXS) and mass spectrometry data [3]. With the structural information we have obtained now, we can analyse in detail the architecture of the secretion machinery and understand the secretion mechanism and the role of specific protein residues for the secretion process.

In our final model, the big inner-membrane core complex of ESX-5 is built by four protein components that form six identical subcomplexes, symmetrically arranged around a central membrane pore. Interestingly, this central membrane pore was observed to be considerably more dynamic compared to the rest of the membrane-spanning protein domains. We suggest that these dynamics are crucial to contribute to the plasticity of the complex needed to transport a diverse set of ‘weapons’ and molecular machines across the mycobacterial membrane. Targeting this mechanism with small-molecule drugs could be one of many possible ways to develop new treatments based on our structure.

The study could also help scientists to develop new vaccines for tuberculosis. The widely used Bacillus Calmette-Guérin (BCG) vaccine, which has its 100th anniversary this year [4], is based on a strain of mycobacterium that has lost its ability to cause diseases because of a defect in the ESX-1 system. However, as BCG vaccination offers insufficient protection and is most effective in infants, alternative vaccines are urgently needed. Due to its close structural and functional relation with ESX-1, targeting the ESX-5 secretion system might spur the development of new vaccines which could complement or replace those currently used.

Author contact:
Matthias Wilmanns, matthias.wilmanns@embl-hamburg.de
Jan Kosinski, jan.kosinski@embl-hamburg.de

References

The molecular structure of ESX-5 was particularly challenging because of its large size, complexity and dynamics. No single structural biology method could provide the full picture. While the resolution of the cryo-EM map allowed building a detailed model in the transmembrane region and in the cytoplasmic region close to the membrane, the resolution of the cryo-EM map alone was not sufficient in the periplasm and distal cytosolic side due to the dynamic nature of the complex. Therefore, we complemented the cryo-EM data with an X-ray crystallography structure of a single protein component obtained at the EMBL beamline P13 at PETRA III, homology models and crosslinking mass spectrometry results and combined the data using the software ‘Assemble’, developed at EMBL Hamburg. This approach enabled us to create a coherent model of the ESX-5 complex.

The level of detail achieved exceeds by far the results of our previous study from 2017 in which we described the overall dimension, stoichiometry and shape of the ESX-5 secretion machinery based on negative stain electron microscopy, small-angle X-ray scattering (SAXS) and mass spectrometry data [3]. With the structural information we have obtained now, we can analyse in detail the architecture of the secretion machinery and understand the secretion mechanism and the role of specific protein residues for the secretion process.

In our final model, the big inner-membrane core complex of ESX-5 is built by four protein components that form six identical subcomplexes, symmetrically arranged around a central membrane pore. Interestingly, this central membrane pore was observed to be considerably more dynamic compared to the rest of the membrane-spanning protein domains. We suggest that these dynamics are crucial to contribute to the plasticity of the complex needed to transport a diverse set of ‘weapons’ and molecular machines across the mycobacterial membrane. Targeting this mechanism with small-molecule drugs could be one of many possible ways to develop new treatments based on our structure.

The study could also help scientists to develop new vaccines for tuberculosis. The widely used Bacillus Calmette-Guérin (BCG) vaccine, which has its 100th anniversary this year [4], is based on a strain of mycobacterium that has lost its ability to cause diseases because of a defect in the ESX-1 system. However, as BCG vaccination offers insufficient protection and is most effective in infants, alternative vaccines are urgently needed. Due to its close structural and functional relation with ESX-1, targeting the ESX-5 secretion system might spur the development of new vaccines which could complement or replace those currently used.

Author contact:
Matthias Wilmanns, matthias.wilmanns@embl-hamburg.de
Jan Kosinski, jan.kosinski@embl-hamburg.de

References
The new gold standard in single-particle X-ray imaging

Millions of diffraction patterns are combined to produce 3D images of nanoparticles

An ambitious application considered for X-ray free-electron lasers is to obtain the 3D structures of macromolecules without having to crystallise or cryogenically cool them. Single-pulse diffraction patterns are measured from individual molecules in random orientations, and millions of these are combined into a 3D dataset that encodes the structure. Extremely high-quality data is required — nothing larger than a single molecule may contribute to the measurement!

In experiments carried out at the European XFEL, over 10 million patterns from gold nanoparticle test objects were collected. Using new algorithms, it was possible to not only orient each pattern in 3D space, but to separate them according to particle heterogeneity. The results show the feasibility of imaging macromolecules.

The determination of the structures of biomolecules at atomic resolution requires bright sources of short-wave-length radiation, which are so energetic that they degrade the very object under observation. Crystallography provides a work-around to this problem by distributing the deposited energy over billions of molecules, orienting and arranging in the regular lattice of the crystal to diffract constructively, giving strong diffraction that can be measured within a tolerable dose. Cooling to cryogenic temperatures extends this tolerable dose somewhat, and also enables electron microscopes — which suffer from similar damage restrictions — to record noisy images of reproducible single molecules. The femtosecond-duration pulses of X-ray free-electron lasers offer yet another way to overcome radiation damage [1]. A femtosecond pulse outruns atomic motions triggered by the X-ray induced ionisation, the motions being limited by the inertia of atoms. In this way, the exposure to the molecule can be increased by thousands of times, to the point where every atom in the sample is ionised several times and the molecule vapourises as a tiny plasma. This destruction occurs after the diffraction. Of course, this also means that an object can only be imaged once. Three-dimensional information requires recording diffraction from a large number of views of the object, which in turn means that we need a large supply of identical (or near-identical) molecules.

This general paradigm of ‘diffraction before destruction’ also applies to non-biological materials, such as the metallic nanoparticles imaged here, and is used in the method of serial femtosecond crystallography — a technique that arose from initial research in single-particle imaging (SPM). An advantage of the approach is that it has an inherently high time resolution and there is no need to cryogenically cool the sample, so it is possible to capture diffraction at different time points during a reaction. The methods demonstrated here to sort heterogeneous structures may also be used to sort the structure of a protein folding into its equilibrium structure or to track a reaction [2].

Another advantage of measuring molecules one by one instead of together in a crystal is that variations in structures can potentially be separated from each other and a set of structures could be determined. This has even higher demands on the processing of the diffraction dataset not only do we need to figure out what the molecule orientation was from the noisy diffraction pattern, but we also need to decide which structure it belongs to. A diffraction pattern is a two-dimensional slice of a three-dimensional spectrum of spatial frequencies. Every pattern cuts through the origin of the space, so two patterns of the same object must intersect along a common line. Patterns of different objects will have no such common line. However, when working with patterns as weak as expected for single molecules, this common line is not enough to base decisions on. Here, instead, the entire collection of diffraction patterns was brought into a number of self-consistent 3D averages using the Expand-Maximize-Compress (EMC) algorithm [4].

Our experiments used gold nanoparticles, smaller than 50 nm, that were specifically synthesised to have a number of discrete shapes and sizes of cubes and octahedra with a narrow range of variability. These were aerosolised and entrained into a narrow beam directed at the X-ray focus of the SPB/SFX instrument at European XFEL using an aerodynamic lens stack. Benefitting from the high repetition rate of the European XFEL, we collected over 10 million diffraction patterns of these particles, overcoming a previous bottleneck in SFX experiments. From this huge dataset, four different structures were imaged in 3D at a resolution of 3 nm by considering the sample inhomogeneities. These results show that it is not only possible to record the numbers of high-quality patterns needed for single-particle imaging, but the algorithms are effective at sorting and classifying with a high degree of accuracy. The next step will be to repeat the experiment using an even finer-focused beam which should allow similar results with more weakly-scattering biological materials.

Author contact: Kartik Ayyer, kartik.ayyer@mpsd.mpg.de

P. Lourdu Xavier, lourdu.xavier pauling@de

Henry Chapman, henry.chapman@desy.de

References

Original publication

For affiliation details refer to original publication.
Unravelling the non-classical emergence of CoO nanoassemblies

X-ray in situ studies bridge the molecular and macro length scales

The fabrication of nanomaterials with well-defined size and shape requires the control of chemical reactions at various length scales. In this context, the classical model of nucleation and growth by monomer addition from a supersaturated solution continues to be the standard. However, recent studies suggest a much more versatile landscape of formation processes [1], including the evolution of small pre-crystalline particles and their assembly into distinct superstructures [2]. Although these non-classical routes have opened up new ways of nanomaterials design, little is yet known about the mechanisms involved. This situation, however, is changing with the development of advanced X-ray spectroscopic and scattering in situ methods bridging the length scales from molecular to macroscopic.

Recent advancements in X-ray spectroscopic and scattering techniques enabled studying the formation of nanomaterials in situ with an unprecedented level of detail. However, a single method is not enough to follow both, chemical and structural changes in solution. Here, using the example of CoO nanoassemblies [3], we illustrate how the combination of spectroscopy and scattering sheds light on all steps of the formation process. The monodisperse nanoassemblies are composed of small, individual crystallites with various edgy shapes (Fig. 1a). With high resolution transmission electron microscopy (HR-TEM), we find different crystallographic orientations within a single assembly (Fig. 1b). These observations suggest a multi-step pathway from the disassembled precursor molecule to the final assembled structure.

We use high energy-resolution fluorescence-detected X-ray absorption spectroscopy near edge structure (HERFD-XANES) measurements to elucidate the formation process from a chemical perspective. Following the concentration of the species over time (Fig. 2a) indicates a fast reduction of the cobalt(III) acetylacetonate (Co(acac)3) to Co(acac)2 in benzyl alcohol, which we identify as a stable intermediate. In a second step, the CoO phase forms. With its high energy resolution, HERFD-XANES is sensitive to subtle changes in the local environment of the absorbing ion, and thus it allows to go beyond identifying chemical species and their oxidation states. In combination with simulated absorption spectra, we can directly read out the conformation of the molecular complex. The cobalt ion in the Co(acac)2 intermediate keeps an octahedral coordination geometry by coordinating to two solvent molecules.

To complement the chemical information, we tracked structural changes during the nucleation and growth of CoO using in situ total X-ray scattering measured at beamline P21.1 at PETRA III. We transformed the data into atomic pair distribution functions (PDF), using both the Bragg scattering from crystalline and the diffuse scattering from amorphous phases. The resulting representation of interatomic distances allows to investigate the structure of all constituents in the reaction mixture. We observed a stepwise increase in the bond distance between the central cobalt ion and the surrounding oxygen ions (Fig. 2b). The steps match the three reaction stages identified earlier with spectroscopy (Fig. 2c). When the Co(acac)3 complex rearranges to form Co(acac)2, and coordinates to solvent molecules, the Co-O distance increases from 1.90 Å to 1.98 Å. The second increase to 2.12 Å matches the transition to the dissolved complex to crystalline CoO. Furthermore, we extract the sizes of the crystallites (Fig. 2d). Starting as small as 3.5 nm, they grow to a final size of 6.5 nm.

Ultimately, small-angle X-ray scattering (SAXS) partly measured at beamline P03 at PETRA III uncovered the assembly process of the crystallites into spherical superstructures. Using a model-based approach to fit the SAXS data, we find that the nanoassemblies grow at a similar pace as the individual crystallites (Fig. 2d), and also the number of crystallites in each assembly increases following the same trend. We conclude that the assembly starts as soon as the smallest crystallites have formed and continues till the end of the reaction. The simultaneous growth and assembly of crystallites are underpinned by the cavernous internal structure of the nanoassemblies evident from the SAXS study. This allows crystallites both at the surface and in bulk to consume monomers from the solution.

The concomitant growth and assembly of crystallites differentiate this pathway from a classical mechanism. In conclusion, only with the combination of modern X-ray spectrosocpic and scattering methods, we can elucidate the emergence of nanoassemblies in solution both from a chemical and a morphological perspective. The resulting mechanistic insights with a high level of microscopic detail help to pave the way towards a generalised understanding of non-classical formation processes.

Original publication

X-ray studies bridge the molecular and macro length scales during the emergence of CoO assemblies, Nature Communications 12, 4429 (2021). DOI: 10.1038/s41467-021-24057-z

Lukas Grote1, Cecilia A. Zito2, Ilja Franka, Ann-Cristin Dippel2, Patrick Reisbeck4, Krzysztof Pitala5,6, Kristina O. Kvashnina7,8, Stephen Baubers10, Lena Y. Horowicz-Mayer10, Bert Nickel4 and Dorota Koziej10

1. Institute for Nanostructure and Solid-State Physics, Centre for Hybrid Nanostructures (CHyN), Universität Hamburg, Hamburg, Germany
2. Deutsches Elektronen-Synchrotron (DESY), Hamburg, Germany
3. São Paulo State University (UNESP), São Paulo, Brazil
4. Faculty of Physics and Center for Nanoscience (CeNS), Ludwig-Maximilians-Universität München, Munich, Germany
5. Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Krakow, Poland
6. Academic Center for Materials and Nanotechnology, AGH University of Science and Technology, Krakow, Poland
7. The Rosenstorf Beamline at the European Synchrotron Radiation Facility (ESRF), Grenoble, France
8. Institute of Resource Ecology, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
9. European Synchrotron Radiation Facility (ESRF), Grenoble, France
10. The Hamburg Center for Ultrafast Imaging (CUI), Universität Hamburg, Hamburg, Germany

Author contact: Dorota Koziej, dkoziej@physik.uni-hamburg.de
Bert Nickel, nickel@physik.uni-muenchen.de
Lukas Grote, lukgrote@physik.uni-hamburg.de
Fighting a greenhouse gas

Dinuclear copper complexes as models of methane oxidation

Methane monoxygenases (MMOs) mediate the first step of bacterial methane oxidation by converting methane to methanol. For the most abundant, copper-dependent form of MMO, the mechanism of this reaction is unknown. We have synthesised copper complexes that bind dioxygen and activate it for incorporation into aliphatic substrates such as methane. Using a combination of resonance-Raman (RR) and X-ray absorption spectroscopy (KAS) as well as mass spectrometry (MS), at beamlines P64 and P65, the electronic and geometric structures of the relevant intermediates were elucidated. A key step in the reactivity of the investigated systems is the cleavage of the O–O bond which leads to highly electrophilic mono-µ-oxo dicopper intermediates, which in turn mediate H-atom abstraction from hydrocarbons, coupled to an O-transfer.

After carbon dioxide, methane is the most dominant anthropogenic greenhouse gas. While its atmospheric concentration is much lower than that of CO₂, methane is one to two orders of magnitude more effective in terms of its global warming potential (GWP). About 60% of the current methane flux from landmass to the atmosphere is the result of human activities, originating from fermentation processes associated with livestock, from cultivated rice paddies, fossil fuel use, biomass burning or landfills (Fig. 1). With the global methane pledge, the reduction of anthropogenic methane emissions has recently also been put on the political agenda. Natural sources of methane emission include wetlands, where methane is produced by microorganisms (methanogens), but also termites, oceans and other sources. On the other hand, soil methane is consumed by methanotrophs, microorganisms that feed on methane, constituting an important sink in the global methane cycle [1–5].

The first step of bacterial methane oxidation is mediated by MMO enzymes, which convert methane to methanol.

This reaction is highly challenging from a chemical point of view as methane is the most inert hydrocarbon and has the strongest C–H bond with a bond dissociation energy of 105 kcal/mol [3,4]. Moreover, the further oxidation of methanol to formaldehyde, formic acid and carbon oxides is difficult to avoid. Industrial processes can circumvent the direct oxidation of methane to methanol by first converting methane to syngas (CO + H₂), from which methanol is produced at high temperatures and pressures. The way in which biological systems mediate direct methane oxidation at room temperature and ambient pressure thus is of profound interest. For the iron-based, soluble form of MMO (pMMO), the corresponding mechanism has been elucidated whereas for the more common, copper-dependent form of this enzyme (particulate MMO, pMMO), details of this reaction are still unknown [3,4]. We have synthesised two catalytically active dinuclear copper complexes that bind oxygen and activate it for insertion into the C–H bonds of hydrocarbons. By using a combination of techniques (RR, XAS and MS), we were able to understand the fate of oxygen in our model systems, from its initial binding to the copper centres to its final incorporation into aliphatic substrates.

The structure of the complexes and the reactive cycle are shown in Fig. 2. When exposed to dioxygen, two of the dinuclear copper(I) precursors bind one molecule of O₂ as peroxide and form a tetranuclear cluster. This intermediate was trapped at 193 K and investigated with RR and XAS as well as cryogenic electrospray ionisation MS. Upon heating to 238 K, the O–O bond of the bridging peroxo unit is cleaved and two dicopper complexes with so-called mono-µ-oxo cores are formed in which one oxygen atom is bound between the two Cu(II) centres. Due to this special environment, the mono-µ-oxo species is highly electrophilic and can abstract a hydrogen atom from organic substrates (R–H). Thereby, an organic radical (R) is formed which in turn combines with the OH group formed at the dinuclear metal site, leading to an alcohol (R–OH). This re-action sequence is denoted as rebound mechanism and applies to many biological oxygenation reactions. However, these processes are usually mediated by high-valent metal-µ-oxo intermediates (Pe(µ), Cu(II)), whereas our systems only require two Cu(II) centres to enable this pathway.

RR has provided valuable information about the structure of the tetranuclear (Cu₂O₃) intermediate and the splitting of the O–O bond, leading to the very reactive mono-µ-oxo di- copper (Cu₂O) complexes. Moreover, detailed insights into the oxidation state and the nearest-neighbour environment of the copper centres in the Cu₂O and Cu₂O₃ complexes were obtained from X-ray absorption fine structure (EXAFS, Fig. 2) and X-ray absorption near-edge structure (XANES). Notably, the edge position in the Cu K-edge XANES spectra was found to shift to higher energy upon oxygenation of the Cu(I) precursor to the Cu₂O intermediate and further conversion to the Cu₂O₃ complex, reflecting a stepwise transition from Cu(I) to Cu(II). Furthermore, information regarding the structure of the Cu₂O and Cu₂O₃ species was obtained from EXAFS, which showed good agreement with the results of density functional theory calculations.

The results provide new insights into the biomimetic oxidation of methane to methanol, a reaction of significant environmental impact. Direct methane oxidation to methanol, occurring under ambient conditions, is of fundamental chemical interest and may also become important in the context of moving toward a methanol economy or reducing methane levels in the atmosphere [1,2,4].

Author contact: Ramona Jargeleit, rjargeleit@gac.uni-kiel.de
Benjamin Grimm-Lebsanft, benjamin.lebsanft@physik.uni-hamburg.de
Michael Rübhausen, mruehbau@physnet.uni-hamburg.de
Felix Tuczek, ftuczek@gac.uni-kiel.de

References

Original publication

Ramona Jargeleit1, Benjamin Grimm-Lebsanft2, Benedikt Maria Flöser2, Michael Rübhausen2 and Felix Tuczek4

1. Institute of Inorganic Chemistry, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
2. Institute für Nanostруктур- und Festkörperphysik, Center for Free Electron Laser Science (STEL), DESY, Hamburg, Germany
3. Max-Planck-Institute for Chemical Energy Conversion, Mülheim an der Ruhr, Germany
4. Department of Inorganic Chemistry, RWTH Aachen University, Aachen, Germany
5. Department of Chemistry and Pharmacy, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany
6. Institute for Analytical and Organic Chemistry, University of Bremen, Bremen, Germany
7. MAX-IEC, Center for Materials and Processes, University of Bremen, Bremen, Germany
8. Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
9. Department Chemie, Ludwig-Maximilians-Universität München, München, Germany

Data availability
The data that support the findings of this study are available from the corresponding author upon reasonable request.

Supporting information
Figure 2

Figure 1

The methane flux from the land to the atmosphere comprises natural and human sources. Methanotrophs convert methane to carbon dioxide and water, constituting an important sink in the global methane cycle [1–3].
What determines the elastic properties of teeth?

XRD and pressurisation quantify tooth nanocrystal stiffness

Dentine, the bone-like tissue that makes up the core of teeth, comprises a composite of carbonated hydroxyapatite nanocrystals (c-Ap) embedding a fibrillar collagen matrix. The elastic properties of the nanoparticles critically define the response of teeth to load but the nanometre dimensions render standard mechanical tests very challenging. X-ray diffraction on the PETRA III beamline P07, combined with in situ water pressurisation, allowed us to directly measure mineral strain and bulk modulus. Backed by electron and atom probe methods, our results improved the understanding of the elastic properties of the biogenic nanocomposite.

Tooth dentine is a bony biocomposite material consisting of carbonated apatite nanocrystal mineral (c-Ap, 50 vol. %, [1]) and an organic component made of protein fibrils (collagen type I, ~30 vol. %) (Fig. 1). Together with water, these constituents form a stiff and tough material that elastically and reversibly survives many years of mechanical loading without failure. We have shown that the combined action of tensile and compressive stresses between the protein nanofibers and the c-Ap mineral crystals strongly contribute to the longevity of dentine [2]. Quantification of these stresses remains elusive, since it is not yet possible to directly measure the elastic properties of c-Ap nanoparticles due to their sub-micrometre dimensions.

We measured the deformation of c-Ap nanocrystals within pig dentine samples by X-ray diffraction using a hydrostatic pressurisation chamber [3] mounted at the P07 High Energy Materials Science beamline (HEMS). Heat treatment was used to remove the collagen constituent (annealing, 250 °C) or removal of CO₃²⁻ (ashing, 550 °C) to separate the effects of protein-induced stresses from chemical strain in the crystals. This allowed us to study the effects of de-carbonation on the properties of the biogenic apatite crystals.

We observed picometre deformations in reversible linear decreases in both α- and c-lattice parameters of the crystals using X-ray diffraction. From these, we determined experimental values of both bulk moduli (K) and the ratios of α- over c-lattice deformation (η) (Fig. 2) for which we observed that deformation along the α-axis is almost twice as high as along the c-axis for annealed c-Ap, whereas upon removal of CO₃²⁻, deformations become more similar along both axes. The larger standard deviations obtained with annealed dentine highlight the natural variation in carbonate content found in different teeth and different locations in teeth.

To better understand results from the experiments at PETRA III, transmission electron microscopy (TEM) and atom probe tomography (APT) were performed by our international team. These methods confirmed that no recrystallisation occurred upon our heat treatment and revealed a dense packing of elongated tablet-shaped nanocrystals, packed into high-density crystalline domains, surrounded by low-density carbon and nitrogen-rich clusters. These measurements further helped confirm that in dentine, carbon is present inside the apatite crystalline nanoparticle domains, likely in the form of carbonate.

Using the X-ray diffraction measurements, we were able to determine the elastic constants of biogenic apatite nanoparticles. In order to convert the deformation measurements into mechanical characteristics of the nanocrystals, it was necessary to match experimental compression measurements and synthetically derived elastic constants.

We achieved this by comparing each experimental result with all possible combinations of elastic constants (C₁₁, C₁₂, C₁₃, C₂₂, C₃₃) of the c-Ap hexagonal crystal system, generated within a range of 0–200 GPa. More than 6 million combinations of these parameters yielded theoretical K and η values, which we matched with our diffusion-derived results, to create distributions in which we identified best matches. Only synthetically generated elastic constants that yielded bulk moduli and lattice strain ratios close to experimental values were considered. Histograms of the selected values allowed us to clearly quantify two of the elastic constants, C₁₁ and C₃₃. These were matched with literature values obtained over the last five decades. Together with estimators of C₁₂ and C₂₂, we could finally determine possible bounds on Young’s moduli E₁₁ and E₂₂ as well as the basal and prismatic Poisson’s ratios, i.e. the Poisson’s ratio along base and side faces of the hexagonal crystal structure of apatite (see grey faces in Fig. 3), of the apatite nanocrystals in the annealed and ashed states. All results demonstrate a marked increase in stiffness upon removal of the CO₃²⁻ from apatite in the biogenic apatite nanocrystals (Fig. 3).

The presented extensive characterisations of biological carbonate hydroxyapatite nanoparticles are extremely valuable to clarify the relationship between carbonate content and mechanical properties of bony tissues. The results of this study will support development of more accurate bone-like materials models.

Author contact: Jean-Baptiste Forien, forien1@llnl.gov
Paul Załasny, paul.zaslansky@charite.de

References

Original publication
Jean-Baptiste Forien1, Jan-Izukaščič2, Tudoratički Oktabač3, Kanahele Hiroe4, Lucy Lai5, Henry P. Schwarze6, Alice C. Deym6, Christina Krywa7, Claudia Fleck8 and Paul Załasny9

1. Lawrence Livermore National Laboratory, Livermore, USA
2. National Institute for Materials Science, Tsukuba, Japan
3. McGill University, School of Geography and Earth Sciences, Hamilton, Canada
4. University of Connecticut Health Center, Farmington, USA
5. Karlsruhe Institute of Technology, Karlsruhe, Germany
6. Technische Universität Berlin, Materials Science & Engineering, Berlin, Germany
7. Charité - Universitätsmedizin Berlin, Restorative and Preventive Dentistry, Berlin, Germany.

Figure 2
Plots of the experimentally measured bulk moduli (K) and lattice strain ratios (η) in annealed c-Ap and ashed carbonated crystals of apatite along the α- and c-lattice direction (E₁₁ and E₃₃, respectively). Plots indicate means and standard deviations calculated based on experimentally derived C₁₁ and C₃₃ and literature models for C₁₂ and C₂₂.

Figure 3
Calculated Young’s moduli and Poisson’s ratios of annealed and de-carbonated crystals of apatite along the α- and c-lattice direction (E₁₁ and E₃₃, respectively). Plots indicate means and standard deviations calculated based on experimentally derived C₁₁ and C₃₃ and literature models for C₁₂ and C₂₂.
Unexpected twist of catalytic nanoparticles

Precise orientation affects shape, size and behaviour

Nanoparticles that make up catalysts can arrange themselves in slightly different ways, and behave significantly differently as a result. This is revealed by an X-ray study of palladium nanoparticles carried out at the DESY NanoLab and PETRA III. The structure of the palladium nanoparticles in terms of its size and shape was monitored under varying oxidation and reduction conditions in situ using X-ray diffraction. The experiments provide systematic insights into the self-organisation of catalyst particles and how the catalytic behaviour is dependent on their orientation, size and shape.

Catalysts often consist of certain metals, such as platinum, rhodium or palladium, which promote the desired chemical reactions without being consumed themselves. The catalytic converters used in the exhaust system of cars, for instance, promote the oxidation of toxic carbon monoxide to carbon dioxide and the reduction of harmful nitrogen oxides. Metallic catalysts usually have the form of nano-particles, because they have larger surface areas for a given amount of material.

More active centres of the catalyst nanoparticles are often located at corners and along edges. The shape and size of the particles can therefore have a substantial influence on their function and efficiency. The connection between the function of catalytic particles and its detailed structure is only just beginning to be understood [1]. With insights into the optimal size and shape of a nanoparticle, for example, catalysts could be made significantly better or cheaper. In particular, the role of the particles’ precise orientation on the substrate has scarcely been explored. It is commonly assumed that around 90% of the metal used in present day catalysts contributes nothing to their function.

In this systematic study, palladium nanoparticles were grown on a magnesium oxide substrate. Both of these materials are typically found in a range of different catalysts, so the system studied serves as a model for numerous applications, including the catalytic converters installed in cars [2]. The nanoparticles were deposited on the substrate in a vacuum by means of molecular beam epitaxy at DESY NanoLab. The size and orientation of the resulting nanoparticles were analysed in situ using high-intensity X-rays at the PETRA III in situ X-ray diffraction and imaging beamline P23.

It clearly emerges that the nanoparticles have a preferred orientation upon deposition. The particles line up along the crystal lattice of the magnesium oxide substrate and almost all of them grow in a certain direction and to a certain size. But only almost all of them: about one in a hundred nanoparticles aligns itself at a small angle, 3.7° to the right or left of the preferred direction (Fig. 1a). This 1% of the particles adopts a second alignment and their shape is also slightly different (Fig. 1b). As a result, the corners and edges with the active centres also differ in the two types of particles, and they behave differently as a catalyst in operation.

The shape of the nanoparticles and its changes in different oxidising and reducing environments was elucidated by probing the scattering signal from the nanoparticle facets in reciprocal space. Figure 2a shows an illustration of such a particle in the preferred orientation with highlighted different facets. The coloured lines illustrated in the top panel of Fig. 2b shows where the corresponding crystal truncation rods arising from the nanoparticle facets are located in reciprocal space. X-ray diffraction data in specific along directions in reciprocal space covering different facets were acquired to deduce how the nanoparticle facets respond in different catalytic environments. The bottom panel of Fig. 2b shows the difference in X-ray diffraction signal along H, K=2-H direction at L = 0.85 in an oxidative compared to in vacuum. The changes in scattering signal in this region of reciprocal space provides information on how the different facets of the preferred [001] oriented and slightly rotated nanoparticles behave in oxidising and reducing environments.

The operational data for the two types of nanoparticles differ considerably, but in view of the complexity of their interaction it is not yet possible to give a simple answer as to which type of particle works better. The study provides insights to the positions of all the atoms and, in addition, how each individual atom contributes to the catalytic effect. These results may potentially lead to the ability to tailor the optimal catalyst for every application [3]. Studying the palladium nanoparticles is itself the first step along this path. On a qualitative level, our observations apply quite generally to catalytic nanoparticles on a substrate.

Author contact: Simon Chung, simon.chung@desy.de

References

Original publication

1. Centre of X-ray and Nano Science (CZRN), c/o DESY Hamburg, Germany
2. Deutsches Elektronen-Synchrotron (DESY), Hamburg, Germany
3. Fachbereich Physik, Universität Hamburg, Hamburg, Germany

Figure 1
(a) Simple rotation, ω, rocking scan around the Pd 111 reflex, showing nanoparticle mosaicity. The two shoulders at ±3.7° are indicative of particles almost all of them grow in a certain direction and to a certain size. This is revealed by an X-ray study of palladium nanoparticles carried out at the DESY NanoLab and PETRA III. The structure of the palladium nanoparticles in terms of its size and shape was monitored under varying oxidation and reduction conditions in situ using X-ray diffraction. The experiments provide systematic insights into the self-organisation of catalyst particles and how the catalytic behaviour is dependent on their orientation, size and shape.

Figure 2
(a) Illustration of the nanoparticles with different types of facets highlighted with colours corresponding to the lines in (b). (b) top, reciprocal space map of a plane around the Pd 111 reflex showing the location of the scattering from different facets. Bottom, a line scan along this plane showing the difference in the X-ray scattering signal in an oxidising environment compared to in vacuum conditions. (Reprinted with permission from ACS Nano 15 8, 13267–13278 (2021). Copyright 2021 American Chemical Society.)
New pathway to harnessing the sun for a clean energy future

Ultrafast X-ray measurement provides important findings for the solar industry

Over the past 50 years, scientists have made great advances in photovoltaic technologies that convert sunlight into electricity and artificial photosynthesis devices that convert sunlight and water into carbon-free fuels. Crystalline silicon is now by far the accepted standard for solar cells, but there are still opportunities to develop low-cost, flexible, readily processable (paintable) materials for photovoltaics based on organic materials. The charge generation processes in these materials are distinctly different from those in conventional semiconductors. Understanding ultrafast dynamics of photon-to-charge conversion is paramount for optimizing such novel light-harvesting systems.

At the heart of many emerging sunlight-to-fuel and sunlight-to-electricity concepts are interfacial processes that require an optimised, concerted flow of charge and energy on the molecular level. Processes evolving on spatial and temporal scales spanning orders of magnitudes have to be connected in order to gain a comprehensive understanding of the fundamental dynamics and scaling laws that enable molecular, interfacial and macroscopic charge and energy transport. Soft X-ray spectroscopy techniques are particularly well-suited to monitor electronic and chemical states of matter with the elemental site specificity and chemical sensitivity that is required to test and improve our fundamental understanding of interfacial chemistry and photophysics in complex systems.

Photoinduced charge generation plays a central role in a broad range of physical, chemical and biological processes that underlie natural and engineered photocatalytic and photovoltaic systems. Organic donor-acceptor systems are particularly intriguing candidates for light-harvesting applications as their properties can be readily modified using well-established chemical synthesis techniques. Improving the efficiency of the underlying light-harvesting and charge generation processes, however, requires detailed knowledge of all the steps from the initial light-induced excitation of the chromophore to the final state where charges are separated in the donor and acceptor phases. Monitoring the evolution of the interfacial electronic structure, as it proceeds in real-time and with the atomic-site specificity and chemical sensitivity of X-ray spectroscopy, holds great promise for improving our fundamental understanding of the reaction mechanisms that underlie the function of such devices.

By using femtosecond X-ray pulses from the free-electron laser FLASH at the plane-grating monochromator beamline PG2 in combination with the wide-angle electron spectrometer (WESPE) end station, we extended the experimental technique of time-resolved X-ray photoemission spectroscopy (trXPS) [1,2] into the femtosecond regime. This enabled us to monitor free charge carrier formation in a model donor-acceptor system — a heterojunction between a copper-phthalocyanine (CuPc) electron donor and a C60 electron acceptor — on their natural timescales for the first time (Fig. 1). The basic principle of trXPS, as depicted in Fig. 1a, is the combination of two light pulses, whereas a ‘pump’ pulse initiates electronic dynamics inside the sample and their time evolution is monitored by a second, delayed X-ray ‘probe’ pulse [3,4]. Figure 2 illustrates the central results of the trXPS study. The binding energy of the C 1s core electrons of C60 directly reflects the charge transfer on a local atomic scale. A shift of the C 1s line to higher kinetic energy, i.e. lower binding energy, indicates that an additional electronic charge is present near the carbon atom that is ionised. Accordingly, XPS enables direct, local and quantitative insight into the critically important step of the generation of separated charges.

The initial excitation results in a locally bound electron hole pair, a so-called exciton. Our studies unveiled a previously unobserved channel for exciton dissociation into mobile charge carriers providing the first direct, real-time characterisation of the timescales and efficiency of charge generation in an organic heterojunction. We demonstrate that the previously reported lifetime of interfacial charge-transfer (ICT) states of about 1 ps [5] results from the competition between two separate relaxation channels: interfacial electron–hole recombination and ICT dissociation into delocalised charges. Moreover, our data provide direct access to the efficiency for free charge carrier generation from ICT states at the CuPc–C60 interface (Fig. 2c). Approximately 20% of photoexcited ICT states relax into delocalised charge carriers that can be extracted from the heterojunction while the remaining 80% recombine and relax within about 1 ps.

The reported findings give strong support to the emerging realisation that charge separation, even from energetically disfavoured excitonic states, is contributing significantly, indicating new options for light-harvesting in organic heterojunctions. The direct determination of energetics, temporal dynamics and relative channel efficiencies for an archetypical organic heterojunction hold great promise that other light-harvesting processes in complex multi-compound systems may be studied on their natural timescales and with the unprecedented site-specificity provided by ultrafast trXPS. This could pave a way towards a better understanding of emerging photovoltaic and photocatalytic frameworks.

Author contact: Friedrich Roth, friedrich.roth@physik.tu-freiberg.de

References

Original publication

Friedrich Roth1, Mario Borgward1, Lukas Winklhofer1, Johannes Mabli1, Steffen Paluch1, Günter Brenner1, Giuseppe Mercurio2, Serguei Molodtsov2,3, Wilfried Marth2,3, Oliver Geiser1 and Wolfgang Ohlert1
1. Institute of Experimental Physics, TU Bergakademie Freiberg, Freiberg, Germany
2. Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
3. Center for Free-Electron Laser Science (CFEL), DESY, Hamburg, Germany
4. European XFEL GmbH, Schenefeld, Germany
5. ITMO University, St. Petersburg, Russia
6. University Hamburg, Hamburg, Germany
Quantum systems will be crucial to future technologies. However, in order to use such systems in practice, it is necessary to control and manipulate them with great precision. Applications of precision control range from quantum computing over quantum communication to quantum metrology. In the X-ray regime, photon and atomic transition energies are on the order of a few kiloelectronvolt. Accompanying the high transition energies are extremely short quantum state oscillation periods of sub-attoseconds. We are entering the realm of zeptosecond magnon oscillations.

Quantum systems with extremely short lifetimes and high transition energies are necessary to control and manipulate them with great precision. Numerous methods have been developed using X-ray cavities, piezo-controlled Doppler shifts or magnetisation switching [4]. A new approach is pursued in this work: In X-ray quantum optics experiments, the atoms are typically in a solid state. Solids host different types of quasiparticles, i.e. excitations of the vibrational, electronic or magnetic degrees of freedom. Here, the quasiparticles of the magnetisation, called magnons, are utilised. As shown in an earlier study, the quantum interactions of the solid structure with the nuclei can be tuned when magnons are excited [5]. These transient magnons are now specifically timed to tune the nuclear transitions with a hitherto unreached precision.

The experiment has been carried out at beamline P01 at PETRA III. The iron isotope 57Fe is embedded in a 13 nm thin magnetic film and features a nuclear transition at 14.4 keV. These transient magnons are now specifically timed to tune the nuclear transitions with a hitherto unreached precision.

The experiments demonstrate zeptosecond interferometry and the possibility to tune an embedded quantum system by exciting the surrounding solid. The method could be applied to quantum systems that are already considered for quantum computers, such as nitrogen vacancy centres in diamonds or ion-doped solids. Precise adjustments of this kind are important when building quantum sensors, for example to establish extremely precise time standards or to detect minute changes in general.

Author contact: Lars Bocklage, lars.bocklage@desy.de

References
Making monopoles visible

An outstanding feature of condensed matter physics is that phenomena predicted in high-energy physics can be realised in the low-energy quasiparticle excitations in the electronic band structure of modern materials. In a new class of those quantum materials, the Weyl semimetals (WSM), the crossing points of the valence and conduction bands can be considered as momentum-space analogues of magnetic monopoles in real space. The monopole character is encoded in the momentum-dependence of the electronic wave functions, namely the so-called Berry curvature, around the so-called Berry curvature monopoles in TaAs. The breaking of inversion symmetry has another important effect on the electronic wave functions, namely the formation of a finite orbital angular momentum (OAM) (see Fig. 1a).

The OAM can be considered as an orbital analogue of the electron spin, and recently a connection between OAM and Berry curvature has been predicted [1,2]. Density functional theory band structure calculations directly demonstrate the existence of OAM in the wave functions in TaAs (Fig. 1a). Importantly, CD, i.e. the photoemission intensity difference between ARPES spectra taken with left and right circularly polarised light, accurately reflects the calculated OAM texture (Fig. 1b). Several sign changes appearing in the calculations are reproduced in the experimental data (Fig. 1a and 2a), providing evidence for a strong OAM-sensitivity of our experiment.

The momentum distribution of the OAM Lz and the CD can be explored in more detail in Fig. 2a. It becomes directly evident that the OAM is strongly modulated around the WP pair marked in Fig. 2b, so that a characteristic checkerboard pattern appears. Indeed, it can be shown that the OAM texture around the WP is strongly related to the topological character. As can be seen in Fig. 2e, the Berry curvature of the Weyl fermion band qualitatively resembles the characteristics of the OAM and the measured CD. Although a detailed evaluation of the three-dimensional field configuration (Fig. 2c,d) shows that OAM and BC are not completely aligned, both share the same topologically non-trivial winding number. Thus, from a band topology perspective, BC and OAM are equivalent around the WP, and they both represent a monopole structure. The OAM, in turn, is accessible experimentally, and the measured CD pattern provides a direct momentum-resolved signature for the Berry curvature monopoles in TaAs.

Our approach goes beyond previous studies in which the mere band dispersion of WSM was investigated using ARPES. In this work, the wave function character of the electronic bulk states carrying the topological information is directly unveiled. Our findings might therefore be applicable to a wide range of topological quantum materials.

References

Original publication

'Momentum-space signatures of Berry flux monopoles in the Weyl semimetal TaAs', Nature Communications 12, 3650 (2021). DOI: 10.1038/s41467-021-23277-3

Maximilian Ünzelmann, Hendrik Bentmann, Tim FiggeMar, Philipp Eck

Jens Buck5,6, Moritz Hoesch7, Matthias Källane5,6, Kai Rossnagel5,6, Ronny Thomale2,9.

1. Experimentelle Physik VI and Würzburg-Dresden Cluster of Excellence ct.qmat, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
2. Institut für Physik, Universitaria, Würzburg, Germany
3. Theoretical Physics I, Universität Würzburg, Würzburg, Germany
4. National High Magnetic Field Laboratory, UWFSA College of Engineering, Tallahassee, USA
5. Institute for Experimental and Angewandte Physik, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
6. Center for Computational Quantum Physics, Flatiron Institute, New York, USA
Ultrafast THz Ohmmeter at extreme temperatures

Multi-cycle terahertz free-electron lasers reveal microscopic origins of electrical conductivity in super-heated solids

Electrical conductivity of matter is dictated by its electronic and structural properties. The conductivity is therefore an important measure of materials under high-energy density conditions that are relevant to planetary science and advanced material processing. These extreme conditions can be produced in laboratory by isochorically heating of solid density targets using high-intensity optical or free-electron lasers (FELs). Utilising synchronised terahertz (THz) and extreme ultraviolet (XUV) FEL pulses, both generated at FLASH, a time-resolved high-precision measurement of DC conductivity of intense XUV-FEL excited nanofoil samples has been achieved. The conductivity evolution during the solid to plasma transition is resolved with a time resolution better than 500 fs.

Electromagnetic waves at THz frequencies have been successfully implemented to measure the electrical conductivity of ultrafast laser-excited samples for decades [1]. It has unique advantages, such as sub-picosecond temporal resolution and contact-free measurements, allowing one to study the conductivity of high energy density matter in a laboratory. However, these novel studies also face several challenges, which includes high plasma density shielding, in case the solid density plasma frequency is >10^{15} Hz, leading to a reduced transmission of the THz radiation through the target. Furthermore, the irreversible solid-plasma phase transition forbids high-repetition rate measurements as applied in conventional solid-state studies.

To overcome these hurdles, we recently applied an FEL-pump–THz-probe experiment at the FLASH BL3 beamline in combination with high-sensitive single-shot electro-optical sampling [2] of the THz-field to measure the conductivity of 30 nm thick gold foils strongly heated by the XUV-FEL pulses to electron temperatures up to 16000 K (experiments setup shown in Fig. 1). As the absorbed XUV energy transfers from the electrons to the ions, the sample transits from a cold to superheated solid and eventually melts into a warm dense liquid. We have determined the DC electrical conductivity over these material states by the measurements of transmitted THz electric field through the heated samples in a time-resolved manner. The multi-cycle THz pulses from FLASH provide continuous measurements of transmitted THz electric field through the heated samples for decades [1]. It has successfully implemented to measure the electrical conductivity of intense XUV-FEL excited nanofoil samples with temporal resolutions better than 500 fs. An example of the experimental data is presented in Fig. 2.

These ultrafast time-resolved measurements offer unique insight into the electrical conductivity. The broadband electrical conductivity from our THz measurements and previous optical measurement (Fig. 3) allows us to differentiate between the individual contributions from electron-electron and electron-ion scattering that limit the conductivity at high temperatures. We found that the electron-electron scattering frequency increased drastically after ultrafast heating of the sample, following the so-called Fermi-Liquid theory that so far was only observed in cryogenic cooled samples in previous studies. The close relation between electron-ion scattering frequency and the structure of the ions based entirely on experimental data is also observed. The study has showcased a new experimental platform that fully utilises the unique capabilities of both the THz and XUV pulses at FLASH. The high-quality data acquired from this experiment will help researchers to test and improve their models on strongly heated materials. In this regime, sophisticated theories, such as quantum molecular dynamics, are required to describe the phenomena.

Author contact: Zhijiang Chen, zchen@slac.stanford.edu
Siegfried H. Glenzer, glenzer@slac.stanford.edu

References

Original publication
'Ultrafast multi-cycle terahertz measurements of the electrical conductivity in strongly excited solids', Nature Communications 12, 1638 (2021). DOI: 10.1038/s41467-021-21756-6

1. SLAC National Accelerator Laboratory, Menlo Park, CA, USA
2. University of Alberta, Edmonton, Alberta, Canada
3. Technische Universität Darmstadt, Darmstadt, Germany
4. Deutsches Elektronen-Synchrotron (DESY), Hamburg, Germany
5. DLR – Institute for Optical Sensor Systems, Berlin, Germany
6. Universität der Bundeswehr München, Neubiberg, Germany
7. Institut für Physik, Universität Bremen, Bremen, Germany
8. The Hamburg Centre for Ultrasoft Imaging, Hamburg, Germany
9. Institut für Experimentelle Physik, Universität Hamburg, Hamburg, Germany
10. European SFIS, Schenefeld, Germany
11. Lawrence Livermore National Laboratory, Livermore, CA, USA
Spin fluctuations unfreeze on cooling

Coherent X-rays reveal low-temperature decay of spin-density wave

In virtually all matter, lower temperatures mean less mobility of its microscopic components. The less heat energy is available, the less atoms vibrate, the less magnetic moments change their direction — they freeze. We have now observed the opposite behaviour: Spin-order fluctuations in a layered nickelate do not freeze on cooling, but actually speed up. When the material is cooled below a threshold temperature, the energy barriers for fluctuations start shrinking faster than the thermal energy. This low-temperature loss of energy barrier height shows an intriguing similarity to an observation in superconducting cuprates.

In high-temperature superconducting cuprates, spin and charge degrees of freedom form nanoscale order into density waves (DW) [1]. This kind of order seems to compete with superconductivity as DW order decays at low temperatures when superconductivity sets in. Remarkably, a similar decay of DW order has been observed in structural layered nickelates, which are not superconducting but otherwise share many properties with the cuprate superconductors. Similar to what is found in cuprates, DW order in nickelates develops on cooling and then starts to decay when cooled further. This decay, which sets in about half of the onset temperature of the DW order, is not driven by competition with superconductivity. In turn, the mechanism responsible in nickelates may also occur in cuprates and contribute to the energy balance between DW order and superconductivity in these materials.

In a recent study, we investigated the low-temperature decay of nickelate DWs. We used resonant soft X-ray diffraction with the photon energy tuned to the Ni 2p → 3d electronic excitations, which provides a high sensitivity to spin and charge order [2]. The experiments were carried out at beamline P04 of PETRA III at DESY and at beamline 12.0.2.2 at the Advanced Light Source in Berkeley. We found the low-temperature DW decay to occur largely via a loss of spatial correlations. Either the ordered regions shrink or dislocations form in these regions. Soft X-rays with a high degree of coherence allowed us to track the evolution of disorder in the DW order in a soft X-ray photon correlations experiment (Fig. 1a) [3]. The spatial distribution of disorder in the sample leads to an interference pattern on the detector such that the diffraction signal breaks into a myriad of speckles (Fig. 1a). Any change of disorder, i.e. the motion of a dislocation or the shift of a domain wall changes the speckle pattern, which allows us to track fluctuations of disorder in time. Figure 1b contains a typical series of speckle patterns. The closer in time the images were recorded the more they resemble each other, when the time separation is large, images differ more and more. From a statistical analysis we obtain the time, on which all similarity gets lost. This fluctuation time describes the dynamics in our DW order pattern.

For our sample, we found fluctuation times of several tens of minutes with quite a drastic temperature dependence (blue squares in Fig. 2). Around 70 K, the order is most stable with a fluctuation time of about 30 minutes. At higher temperatures, fluctuations speed up, which is quite commonly observed when higher thermal energy makes fluctuations faster. Quite unexpectedly, though, also when cooled to below 70 K, the fluctuation times start decreasing again, i.e. the fluctuations speed up there too.

Around the temperature where fluctuations are slowest, the spatial correlations are largest (green symbols in Fig. 2). In fact, a monotonous relation between correlation length and fluctuations speed has been observed in several materials. For the present case, though, we find that the correlation length alone cannot describe the observed temperature dependence of the fluctuations. We find the same fluctuation times at pairs of high and low temperatures where correlation lengths clearly differ (see grey lines in Fig. 2). Hence, temperature must play a role as well.

A model describing a relationship between fluctuation times, correlation length and temperatures that is of activated dynamic scaling (ADS) [4]. In this model, the correlation length defines an effective energy barrier for thermally activated fluctuations. An extended ADS model describes our experimental findings well (Fig. 2) and explains the unusual behaviour: Below 70 K the loss of spatial correlations causes a reduction of energy barriers that proceeds faster on cooling than the loss of thermal energy. In consequence, the fluctuations do not freeze but rather unfreeze.

Given the striking similarity in the low-temperature decays in nickelates and cuprates one may wonder, to what extent our observation matters for the energy balance between DW order and superconductivity. While the low-temperature fluctuations we observe are probably too slow to have a sizeable effect on material properties, we expect much faster fluctuations to be present at lower temperatures and those may indeed play a relevant role. We had to concentrate on the most intense region of the DW Bragg peak related to fluctuations on long spatial length scales, while faster fluctuations on shorter length scales should be visible in the wings of the Bragg peak. Next-generation X-ray sources with higher coherent soft X-ray flux and faster detectors will allow us to study these fast fluctuations directly.

Author contact: Christian Schüßler-Langeheine, christian.schuessler@helmholtz-berlin.de

References

Original publication

Alessandro Ricci1, Nicola Poccia1, Giangiacomo Campi1, Stefano Mischia1,2, Leonardo Müller1,3, Baby Joseph1, Bo Shi4, Alexey Zuzayeva5, Marcel Buchtmann5, Christoph Trabert6,7, James C. T. Law5,8, Jeroen B. Smit9, Agostino Asong Noahvo9, Markus Branden9, Sujoy Roy4, Michael Sprung1 and Christian Schüßler-Langeheine1

1. Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
2. Ludwig Institute for Solid State and Materials Research, IFW, Dresden, Germany
3. Institute of Crystallography, CNR, Roma, Italy
4. Advanced Light Source, Berkeley, USA
5. Indian Institute of Technology, Varanasi, India
6. Dieta Synchrotron, Trevi, Italy
7. Van der Waals-Zeeman Institute, University of Amsterdam, Netherlands
8. IF Physikalisches Institut, Universität zu Köln, Germany
9. Helmholtz Zentrum Berlin für Materialien und Energie, Berlin, Germany
10. Department of Physics and Astronomy, Simonis State University, Rochester Park, USA
11. Faculty of Mathematics and Natural Sciences, Institute Theoretical Bandung, Indonesia
12. Department of Physics, Concordia College, Moorhead, USA
It was recently shown that a new spectroscopic technique, so-called ‘non-resonant inelastic X-ray scattering from an s-core hole’ (s-NIXS), can make visual images of the spatial charge density of transition metal ions in that crystal. This imaging ability has recently been used to determine the ground-state orbital character of several TM compounds including those with complex crystal structures [2].

In the present work, we went one step further. Here we investigate the excited states and identify their orbital character via imaging. To demonstrate its feasibility, we performed s-NIXS experiments on α-Mn₅O₆ (cubic rocksalt structure), see Fig. 1b, at the dedicated NIXS endstation of the P01 beamline at PETRA III. Figure 2a shows a selection of the M₅ edge (3s → 3d) spectra collected for several sample orientations. First, we plot the integrated intensity of each spectrum against the angle, see Fig. 3, top. The plot shows no orientational dependence, indicating a spherical ground-state charge density which is in fact fully consistent with the 3d⁵(3t²g) high-spin ground-state configuration of the Mn⁵⁺ ions in α-Mn₅O₆. Next, we take a closer look at the set of spectra in Fig. 2a. They are not the same; their centre moves on the energy axis and their widths vary. This is due to the presence of two peaks, i.e. two possible transitions, whose relative intensity is a function of the angle. The two narrowest spectra are those for q∥[110] and q∥[100], and they are the two farthest apart in energy. Taking these as references, it is possible to fit the corresponding spectra using their linear combination, see Fig. 2b. The corresponding weights (c₁₁₁ and c₁₀₀) can now be drawn on a polar plot, and they follow the known shapes of the t₂g and e_g orbitals, respectively, see Fig. 3, bottom. The final states are of the 3s⁵3d⁴⁵ type, and as far as the 3d part is concerned, we thus can identify them as the t₂g → t₂g → 3e_g and E → t₂g → e_g states, respectively. Their energy separation is the cubic crystal-field splitting 10Dq, and we can read directly from Fig. 2b that it is 0.78 eV.

In summary, with the imaging capability of the new s-NIXS technique, it is now possible to directly determine not only the 3d charge distribution in the ground state but also the orbital character of the excited states. This gives us additional access to energy parameters that are relevant for the properties of the material. There is no need to rely on spectral analysis using complex calculations.

Author contact: Andrea Amorese, amorese@cpfs.mpg.de

Lü Hao Tjang, hao-tjang@cpfs.mpg.de

References

Original publication
DOI: 10.1103/PhysRevX.11.011002

Andrea Amorese1, Brett Leedahl1, Martin Sundermann1, Hlynur Gretarsson1, Zhinuo Hu2, Heng-Jin Lin3, Chien-Te Chen4, Marcus Schmidt1, Horst Borrmann1, Juri Grin1, Andrea Severing1,2, Maurits W. Haverkort1,3 and Liu Hao Tjang1

1. Max-Planck Institute for Chemical Physics of Solids, Dresden, Germany
2. Institute of Physics, University of Cologne, Cologne, Germany
3. Deutsches Elektronen-Synchrotron (DESY), Hamburg, Germany
4. National Synchrotron Radiation Research Center, Hsinchu, Taiwan
5. Institute for Theoretical Physics, Heidelberg University, Heidelberg, Germany
Smaller, faster, more energy-efficient: The requirements to computing and data storage become increasingly demanding and alternative concepts are continuously explored. Small magnetic textures, so-called skyrmions, are proposed as an ingredient in novel memory and logic devices. However, in our study, we demonstrate that skyrmions can be created and annihilated with single pulses of an ultrashort laser. Combining high-resolution X-ray imaging and time-resolved scattering, we reveal the fundamental mechanism leading to a creation of skyrmions on a time scale of only 300 ps. Based on our findings, we make first proposals for applying the concept in devices.

Skyrmions in thin magnetic films are localised, chiral magnetisation textures where the magnetisation continuously reverses from the outside to the inside (see inset in Fig. 1a). In particular, they are distinguished from other textures by their spherical topology. As a result, the creation or annihilation of a skyrmion involves a transition of the magnetic spin texture of the initial state and a single skyrmion. This finding is in contrast to skyrmion creation by spin–orbit torques where skyrmions preferentially form at natural or artificial pinning sites [1]. Therefore, we can rule out creation mechanisms based on optically generated spin torques.

To investigate the mechanism and speed of the topological transition, we performed complementary time-resolved X-ray scattering experiments at the SCS beamline at European XFEL. In these experiments, the small-angle scattering from the transient magnetic structures is detected during skyrmion formation after laser excitation. Surprisingly, we found that the transition to the skyrmion phase proceeds on a time scale of only 300 ps which is significantly faster than any magnetic switching process in a ferromagnet. We observed so far [2] in concert with atomistic spin simulations, the scattering experiments reveal that the laser promotes the magnetic system into a high-temperature state of strongly fluctuating spins. In this — so far undiscovered — fluctuation phase the barrier for topological switching is reduced and skyrmions can appear in large numbers as short-range ordered nuclei. Subsequently, the nuclei coarsen to their equilibrium skyrmion size and density.

Given that skyrmions can have a size in the range of ten nanometres [3] and yet be stable at room temperature, our findings may have interesting implications for future computing concepts based on skyrmions as logic entities. Here, we bring forward the idea of an ultrashort ‘skyrmion reshuffling’ device as randomised input for probabilistic computing. In this computing scheme, numbers are represented as strings of random bits of ‘0’ and ‘1’, with the probability to encounter ‘1’ encoding the number value. Computations can then be carried out via logic operations between individual bits of different input numbers. While this scheme is inherently very error tolerant, it requires decorrelated inputs of the gates. A laser could generate such random skyrmion strings in a device where their density, i.e. the probability computing value, is controlled by the applied field. With our work we demonstrate that ‘reshuffling’ of skyrmions can be performed optically on a timescale of picoseconds compatible with state-of-the-art computer clock speed and much faster than in previous concepts based on thermal diffusion [4] operating on the timescale of seconds.

References

Original publications
DOI: 10.1038/s41563-020-0089-1

Felix Büttner, Bastian Pfau, Felix.Buettner@helmholtz-berlin.de

DOI: 10.1063/5.0046033

For affiliation details refer to original publications.
Dynamical heterogeneity in a cooked egg

Microscopic dynamics of a heat-induced protein gel revealed using coherent X-ray scattering

Reorganisation of the microscopic structures which are under stress in a protein gel network can lead to heterogeneity in its relaxation dynamics. Understanding such reorganisation requires the understanding of the structure and dynamics of protein gels on a broad range of lengthscales and timescales, ranging from single proteins (nanometres) up to the network mesh size (micrometres), and milliseconds up to hundreds of seconds. However, the studies on the dynamic properties of thermal gels of proteins, so far, have only focused on the understanding of internal or short-time processes [2,3].

We have demonstrated the applicability of the sophisticated state-of-the-art technique low-dose X-ray photon correlation spectroscopy (XPCS) in ultra-small-angle X-ray scattering (USAXS) geometry on a real protein gel [4,5]. In this experiment, a series of time-resolved scattering patterns is recorded using an area detector. Each of these scattering patterns is divided into different wavevector modulus \(q \) regions and the intensity autocorrelation functions from each region are calculated using

\[
g_r(q, t) = \frac{\langle I_q(t)I_q(t+\tau) \rangle}{\langle I_q(t) \rangle^2}
\]

where \(I_q(t) \) is the scattered intensity at a measurement time \(t \) and \(\langle \cdot \rangle \) indicates the average over the measurement time \(t \) and the pixels within the wavevector modulus range \(q \Delta q \). This intensity autocorrelation function can be described by the Kohlrausch-Williams-Watts (KWW) function [4,5]

\[
g_r(q, t) = 1 + \beta \exp-(t/\tau)^\alpha
\]

where \(\beta \) is the characteristic relaxation time of the system and \(\alpha \) is the stretching exponent, reflecting the deviations from the exponential behaviour.

In the case of a non-equilibrium system, it is common to calculate the two-time correlation function given by

\[
c_c(q, t_1, t_2) = \frac{\langle I_q(t_1)I_q(t_2) \rangle_{\text{time}}}{\langle I_q(t_1) \rangle \langle I_q(t_2) \rangle}
\]

where \(I_q \) is the intensity at the pixel \(p \) and \(\langle \cdot \rangle_{\text{time}} \) indicates an average over the pixels within the wavevector modulus range \(\Delta q \). The lines perpendicular to the diagonal of all the two-time correlation plots can be extracted to obtain the intensity correlation functions, \(g_r(q, \tau) \).

Using this technique, we followed the simultaneous evolution of the microscopic dynamics on lengthscales of the network mesh size and the structural evolution corresponding to the gelation kinetics of a hen egg white. XPCS experiments were performed at the beamline P10 of PETRA III, using an X-ray wavelength of 1.54 Å. During the gelation, we performed five consecutive XPCS runs, each run corresponding to about 160 s, at different fresh sample spots. The corresponding two-time correlation functions are depicted in Figs 1a–e, and allow us to follow the evolution throughout the entire measurement time. The corresponding growth kinetics of the network structure show that, under the chosen conditions, the network structure evolution is remarkably well separated from the dynamics, i.e., the dynamics are observable only after 160 s (the bottom left corner of Fig. 1b) when the major part of the structural evolution is complete. The microscopic dynamics are observed to be hyper-diffusive and a pronounced slowing-down with time \(t_w \) is observed in Fig. 1f. The stress-activated dynamics exhibit an exponential rise of the relaxation time (aging) and a subsequent steady-state ballistic motion displaying significant temporal heterogeneity (Fig. 2a). The lengthscale (inversely proportional to the wavevector modulus \(q \)) dependence of the dynamics is used to calculate the spatial extension \(\alpha \) of the decorrelation events using the method described in [6]. Figure 2b depicts that \(\alpha \) decreases from 100 nm to a few nanometres upon ageing, accompanied by a lowering of the degree of dynamical heterogeneity as a result of the discrete rearrangement events in the gel. These dynamical events are such that they do not change the structure of the gel.

Our investigation paves the way for future studies of dynamics following protein gelation, aggregation, liquid–liquid phase separation, as well as other phase transitions on lengthscales from nanometres to microns. Thus, the established framework in this research has profound implications both for the food industry and the fundamental study of phase transitions of various soft-matter systems.

Author contact: Nafisa Begam, nafisa.begam@ifapi.uni-tuebingen.de

References

Original publication

Nafisa Begam1, Anastasia Ragulskaia1, Anita Girilli1, Hendrik Rahmann1, Sivasurender Chandran1, Fabian Westermeier1, Mario Reiser2,5, Michael Sprung2, Faez Zhang3, Christian Gutt4 and Frank Schreiber1

1. Institut für Angewandte Physik, Universität Tübingen, Germany
2. Department Physik, Universität Siegen, Germany
3. Department of Physics, Indian Institute of Technology Kanpur, India
4. Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
5. European XFEL, Schenefeld, Germany
Unusual melting in diamond
Atomic-scale time-resolved visualisation of ultrafast bond breaking by X-ray laser

In a conventional melting process, the application of heat or pressure causes large thermal vibrations of atoms at first and their bonds break apart later. When matter interacts with ultraintense X-ray pulses melting occurs in a different way. We have found evidence of an unconventional melting process in diamond induced by an X-ray laser beam. Using an X-ray pump-X-ray probe technique, we have demonstrated that covalent bonds in diamond break apart straight away, and only afterwards the atoms start moving underneath to the melting.

Since their discovery in 1895, X-rays have become established as an invaluable probe for gaining an atomic insight into the structure of matter through various kinds of X-ray-matter interaction processes, such as scattering, absorption, emission of photoelectrons and fluorescence. These interactions were usually weak with the previous generation X-ray sources, and therefore it was assumed that X-ray irradiation did not modify matter. This situation has been totally changed by the recent advent of X-ray free-electron lasers (XFELs) which can generate high-brilliance X-ray pulses with femtosecond durations.

When an XFEL pulse irradiates matter, photoionisation and emission of Auger electrons occur almost simultaneously during or shortly after the irradiation with the pulse. The photoelectrons and Auger electrons collide with bound electrons in the surrounding atoms and strip outer shell electrons, triggering a cascade of collisional ionisations [1]. Thereby, a massive number of electrons are excited almost at once. A numerical simulation [2] predicts that a nanometre-focused XFEL beam with intensity of about 10^{19} W/cm2 [3] may excite approximately 30% of valence electrons to the conduction band of diamond. Such an enormously high electron excitation makes interaction of X-rays with matter irreversible, resulting in atomic disordering of matter. Deep understanding of such transient XFEL interaction with matter is essential not only because of fundamental interest but also for all potential XFEL applications.

In the reported experiment, an atomic-scale time-resolved visualisation of XFEL-matter interaction using diamond as a benchmark sample was performed. By employing the unique capability of the SPring-8 Angstrom Compact free-electron Laser (SACLA) [4], multiple diffraction peaks of diamond were measured in the X-ray pump-X-ray probe experiment (Fig. 1). For explanation, the first pulse (pump pulse) excited the diamond and the second pulse (probe pulse), with a controlled delay time, was used to investigate the changing structure of the sample with Bragg diffraction technique. By carefully analysing the diffraction intensity of the probe pulse, we determined the electron density maps in diamond after excitation with the pump pulse, as depicted in Fig. 2.

The measurement revealed that the covalent bonds between the carbon atoms of the diamond were broken and the electron distribution around each atom became almost isotropic within about 5 fs after the pump pulse, followed by the onset of the atomic movement underway to the melting. The temporal order of the bond breaking and the atomic disordering was opposite to the conventional melting process, where the application of heat or pressure causes large thermal vibrations of atoms at first and later the bond breaking.

The measured results were interpreted on the basis of dedicated theoretical simulations with the code XTANT [2]. These simulations showed that the observed displacement of carbon atoms was due to an ultrafast transition of the diamond’s crystal structure caused just by the presence of many electrons excited by the intense XFEL pulse. The structural ‘non-thermal’ transformation forced atoms to quickly relocate their positions. It was called ‘non-thermal’ [5,6] as it was not triggered by ‘thermal’ heating of atoms in the crystal lattice, which takes longer time. The simulations allowed to unambiguously identify the mechanism and the stages of the observed transition which ended in rapid diamond melting.

The X-ray-induced non-thermal melting should be ubiquitous for many experiments with high intensity XFELs, such as single-particle imaging, protein nanocrystallography and generation of warm dense matter and plasma in high-energy-density regime. Particularly, the finding of this study should contribute to developing methodologies for structure determination with intense XFEL pulses, as the X-ray-induced damage, first electronic and later structural, occurring in this regime during the irradiation, should be carefully treated.

References

Original publication

Author contact: Beata Ziaja, ziajagmail.desy.de

Eiji Nishibori, nishibori.eiji.ga@u.tsukuba.ac.jp

56 | Science Highlights | Structure and structural dynamics

Science Highlights | Structure and structural dynamics | 57
Structural dynamics of laser-induced shock waves

Pump-probe X-ray holographic imaging of laser-induced cavitation bubbles with femtosecond FEL pulses

In this experiment we have studied laser-induced cavitation in water, i.e. the process of generating vapour-gas bubbles following optical breakdown and plasma formation. The initial supersonic regime of bubble expansion leads to the emission of a shock wave. The cavitation bubble grows up to a point of maximum radius and subsequently collapses which may again result in the emission of a shock wave. Over the last decades, several applications of laser-induced cavitation have evolved, ranging from material and surface processing, sonochemistry to medical laser surgery. For a range of important applications, from laser surgery to material processing.

Gas bubbles in a liquid are a frequent phenomenon in our daily environment, from a glass of sparkling water to the surf of the sea. They also occur in extreme non-equilibrium states of cavitation bubbles, involving fast dynamics and highest states of density, temperature and pressure. Apart from fundamental questions, cavitation bubbles are also relevant for a range of important applications, from laser surgery to material processing. Here, we generate cavitation bubbles by focusing a nanosecond infrared (IR) laser pulse into water. Following dielectric breakdown and a rapid plasma expansion, a shock wave is emitted and a cavitation bubble is formed. We investigated the early dynamics of this process by holographic flash imaging with X-ray free-electron laser (XFEL) pulses.

We used two different phase retrieval approaches — an iterative scheme based on alternating projections [7] and an algorithm working on the radial intensity distribution for radially symmetric objects. The latter approach, which we denote radially fitted phase (RFP), uses an optimiser to find the expected radial phase distribution. Such an optimiser minimises the mismatch between the measured radial intensity profile and the profile obtained by numerical propagation of the modelled phase profile to the detector (Fig. 2a). Exploiting spherical or elliptical symmetry, the 3D radial intensity distribution (Fig. 2c) is obtained from the projected phase (Fig. 2b) and by proportionality also the radial density distribution $\rho(r)$. Combined with a modified Tait equation of state (EOS) for water, this yields the pressure profile $p(r)$ of the shock wave which is in the gigapascal range.

This analysis is applied to over 5000 individual cavitation events which are categorised in terms of delay Δt and deposited bubble energy E_B. Figure 2d depicts the radial dynamics of the shock front and the bubble boundary for a range of high E_B, obtained from the X-ray holograms together with simulations based on the Gilmore model for cavitation dynamics and the Kirkwood-Bethe hypothesis for shock wave propagation. Figure 2e shows selected shock wave profiles at low E_B. While our simulations describe the experimental data for low E_B quite well, we observe pronounced discrepancies between simulations and the shock wave structure for higher E_B (see Fig. 2f). Standard models for cavitation dynamics and the Tait EOS at high pressures do not accurately describe the observations.

In summary, the quantitative analysis of near-field diffraction patterns in the holographic regime gives access to physical conditions of cavitation, including transition from plasma to a cavitation bubble, density waves and compression of the shock wave. The structural dynamics, in particular the measured density in the shock wave, provides an important constraint and pushes the limits of standard EOS and numerical simulations. In a follow-up beamtime we will extend the work to study the bubble collapse. Today, the shape in the final stages of collapse associated with strongest compression and sonoluminescence phenomena are still unknown.

Author contact: Malte Vassholz, mvassh@gwdg.de

References

Original publication

Malte Vassholz, Hans-Peter Hege, Johannes Hagemann, Juan M. Mussi, Markus Osterhoff, Robert Mettin, Thomas Kurz, Andreas Schropp, Frank Seifert, Christian G. Schroer, Markus Scholz, Johannes Möller, Jing Helman, (Mike Breitenstein), Chan Kim, Alexey Anezaki, Wei Lu, Roman Shayduk, Robert Schaffer, Andras Madves and Tim Salditt

1. Institut für Rontgenphysik, Georg-August-Universität Göttingen, Göttingen, Germany
2. Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
3. Österreichisches Institut für Materialkunde, Austrian Academy of Sciences, Göttingen, Germany
4. Fachbereich Physik, Universität Hamburg, Hamburg, Germany
5. European XFEL, Schenefeld, Germany
Probing the interior of water-rich planets

The deep water layer of low-density planets would be ‘fuzzy’ with dissolved magnesium from the rocky core

Water-rich planets such as Uranus and Neptune in our Solar system could be the most common type in our galaxy. Direct exploration for such planets is difficult, if not impossible, due to the distance from the Earth, resulting in limitations of geophysical data to infer the planet’s internal structures and compositions. Conventional models have assumed separate layers of water and rock based on their chemical behaviours at low pressures. However, recent models have suggested a compositional gradient in the interior in order to explain the low surface temperature of the planet. Our research provides experimental evidence of atomic-scale mixing between water and rock which can support the thermal boundary layer model.

Astrophysical surveys so far have suggested that water-rich planets, like Uranus and Neptune, could be prevalent in our galaxy [1]. However, their internal structures and geochemical cycles are not well understood. According to the conventional models, the water-rich planets have been assumed to have distinct layers of atmosphere, an icy (mostly H2O) mantle and a rocky (and/or metallic) core, positioning the layer interface between H2O and rocky layers in a range of high-pressure and high-temperature conditions [2,3]. However, recent internal models seeking to explain the low luminosity of Uranus invoked a compositional gradient model associated with a thermal barrier [4].

To understand the interior of water-rich planets by experiments, typical mantle-rock-forming minerals, olivine ([Mg,Fe]2SiO4) and ferrophilic phase (Fe3O4), were immersed in water and compressed between two diamond-anvil cells (DAC) and heated by an infrared laser to set the sample conditions in the pressure range of 15–80 GPa and the temperature range of 1000–4000 K. Under such simultaneous high-pressure and temperature conditions, we monitored the chemical reactions between the minerals and water using bright synchrotron X-rays provided by the P02.2 extreme conditions beamline (ECB) at PETRA III and the beamline 13-ID-D at APS. Our data showed that (liquid) water could leach Mg from the starting minerals was observed, concomitant to the appearance of new diffraction peaks from brucite [Mg(OH)2]. This demonstrates that the Mg component is dissolved in water from both olivine and ferrophilic, and precipitates as Mg(OH)2 in a low-temperature region due to the decrease in solubility.

Details of the reaction processes were confirmed by scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy of the recovered samples (Figs. 1-3). We found a dome-like structure (Fig. 1a) as a result of the dissolution and precipitation of the Mg component, together with a porous silica-rich layer left in the original sample position (Fig. 1b). We interpret this as selective dissolution, transportation and precipitation of Mg by water/ice under the thermal gradient within the sample chamber (Fig. 1d).

Mg dissolution is strongest in the pressure range of 20–40 GPa above 1500 K (Fig. 2a). Such conditions are close to the temperature-conditions expected for the boundary between water and rocky layers of Earth-sized water-rich exoplanets, such as TRAPPIST-1f [5] (Fig. 2b). In the case of large water-rich planets such as GJ1214b [6], water-rock interactions would still occur, albeit in a reduced degree which will limit the range of chemical gradients at the boundary (Fig. 2b). Alternatively, water-rock reactions can occur during the hot and early stages of planetary accretion for yet larger planets, such as Uranus, which would remain as a thermal boundary layer in the top portion of the mantle [7], explaining its unusually low surface luminosity.

We plan to extend our investigations for the interior of water-rich planets to chemical mixing between other icy materials, such as CO2, NH3, and lithophile (rock-loving) elements. When the pressure range is extended, possible changes in the properties of H2O are expected as well, for example, into the superionic state. Future studies on volatile-rock reactions will thus provide important thermodynamic data for advancing our knowledge on water-rich planets which could be common in our galaxy.

Our study was performed as a part of the Early Science Program of the Centre for Molecular Water Science (CMWS) that is currently being set up at DESY.

Author contact: Taeyun Kim, tppower36@yonsei.ac.kr
Yongjae Lee, yongjaelee@yonsei.ac.kr
Sang-Heon Dan Shim, shdh@yonsei.ac.kr

References
Zeptoseconds across the molecule

Molecular double-slit experiment uncovers the travel time of light from one end to the other

Two stones dropped simultaneously into water create a double-slit-like interference pattern on the surface which is symmetric around the centre of the two drop points. A skipping flat pebble, which jumps off the water surface once before it sinks at a position further away, results in an asymmetric interference pattern that is shifted towards the position where the stone sunk. The reason for the asymmetry is the time delay between the births of the two waves on the water’s surface. The electron angular distribution from photoionisation of the hydrogen molecule also shows a double-slit-like interference pattern, and we investigated its asymmetry to measure the travel time of light across the molecule.

Photoelectron emission from the hydrogen molecule (H₂) mimics the double-slit experiment. The two centres of the diatomic molecule behave like independent photon absorbers and as indistinguishable sources of coherent photoelectron waves [1]. Subsequently, their interference fringes become observable in the angular emission pattern of the outgoing electron in the molecular frame of reference. In the past, this molecular double-slit experiment has provided insight into some of the most fundamental concepts of quantum mechanics like wave–particle duality of the electron, decoherence of a quantum system or entanglement of quantum mechanics like wave–particle duality of the electron, decoherence of a quantum system or entanglement among quantum particles [2,3]. In this work, we showed that the double-slit behaviour of H₂ photoionisation unveils yet another fundamental concept of nature: the finite speed of light.

During the process of photoionisation, a wavefront of constant phase, i.e. a photon, sweeps from one end of the molecule to the other. The finite speed of light should affect the photoionisation of H₂ because the photoelectron wave cannot be launched at the same time from the two atomic centres while the photon arrives at different times. Accordingly, the contributions from the two centres to the total photoelectron wave are subject to ‘birth time delay’ and we expected the corresponding interference pattern to be asymmetric. From a simple model perspective, this birth time delay should correspond to the travel time of the photon across the molecule which is 247 zeptoseconds ([1 zs = 10⁻²¹ s] for the average bond length of molecular hydrogen (R = 1.4 au [atomic units])).

In the present work, we searched for the birth time delay of electron emissions in one-photon double ionisation of H₂ at a photon energy of 800 eV. Our experiment employed a cold target recoil ion momentum spectroscopy (COLTRIMS) reaction microscope and it was performed at the PIPÉ end station of beamline P04 at PETRA III using circularly polarised light. For each detected photoelectron event, the experiment produced the three-dimensional momentum vectors of all four reaction fragments (two electrons and two protons). The two proton momentum vectors are antiparallel and point in the direction of the molecular axis. We used this information during the data analysis to transform the electron momentum vectors into the molecular frame of reference and to identify the orientation of the molecule with respect to the light propagation direction.

In double ionisation of H₂, the excess energy is shared between the two electrons and for highly asymmetric energy sharing the fast electron practically behaves like a photoelectron in single ionisation. Hence, we had to restrict our investigation to fast electrons that carried more than 96% of the excess energy. Figure 1 shows the electron angular distribution of those fast electrons as a function of the kinetic energy release that equals the sum of the kinetic energies of the protons which is inversely proportional to the molecular bond length R at the moment of ionisation. As one would expect from the behaviour of the interference pattern of a classical double-slit experiment, where the number of interference fringes increases as the slit distance increases, the angular separation of the maxima becomes smaller with growing R. Here, we averaged over all molecular orientations in the laboratory frame of reference.

In double ionisation of H₂, the excess energy is shared between the two electrons and for highly asymmetric energy sharing the fast electron practically behaves like a photoelectron in single ionisation. Hence, we had to restrict our investigation to fast electrons that carried more than 96% of the excess energy. Figure 1 shows the electron angular distribution of those fast electrons as a function of the kinetic energy release that equals the sum of the kinetic energies of the protons which is inversely proportional to the molecular bond length R at the moment of ionisation. As one would expect from the behaviour of the interference pattern of a classical double-slit experiment, where the number of interference fringes increases as the slit distance increases, the angular separation of the maxima becomes smaller with growing R. Here, we averaged over all molecular orientations in the laboratory frame of reference.

Subsequently, we investigated the interference pattern as a function of the angle β between the molecular axis and the light propagation direction for the subset data, R = 1.40 ± 0.04 au, from Fig. 1. The interference fringes in Fig. 2a are tilted because of the asymmetry expected from birth time delay. For the quantitative analysis, we determined the angular positions of the zeroth-order interference maxima for each β through Gaussian fits as indicated in Fig. 2b. The angular position of the zeroth-order interference maxima ϕ₀ and the birth time delay τ are related through τ = cos αϕ₀(R/av), where av is the phase speed of the electron wave. The resulting calculated birth time delay as a function of β is shown in Fig. 2c and compared to the simple model case of τ = cos β(R/v) where the time delay is simply given by the projection of the molecular bond length onto the light propagation axis divided by the speed of light v. Interestingly, the measured birth time delay overestimates the values expected from the simple model calculation.

Following up on our initial experimental work, this deviation has fuelled interest to investigate the birth time delay from a theoretical perspective. While the issue is not yet entirely resolved, we strongly suspect that the discrepancy originates from the two-electron nature of the investigated process [4].

Author contact: Sven Grundmann, grundmann.atanoni.uni-frankfurt.de
Till Jahnke, jahnke@atom.uni-frankfurt.de
Florian Trinter, florian.trinter@gmail.com
Reinhard Dörner, doerner@atom.uni-frankfurt.de

References

Original publication
Sven Grundmann1, Daniel Trinter1, Kilian Fehre1, Lothar Ph. H. Schmidt1, Florian Trinter1,2,3, Till Jahnke1, Markus S. Schöffler1, Reinhard Dörner1

1. Goethe-Universität, Institut für Kernphysik, Frankfurt am Main, Germany
2. Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
3. Fritz-Haber-Institut, Molecular Physics, Berlin, Germany
Exploring astrochemistry with ultrafast XUV pulses at FLASH
A time-resolved study of polycyclic aromatic hydrocarbons

Aromatic infrared vibrational signatures show that polycyclic aromatic hydrocarbons (PAHs) exist virtually everywhere in space. These molecules play an important role in interstellar chemistry, including providing reaction surfaces, aggregating into larger species such as fullerenes, forming in interstellar clouds, and as such have been the subject of laboratory experiments for many decades. Astrochemical molecules are typically identified by their unique microwave rotational spectrum, but the low dipole moment in most PAHs has made this challenging. Substituted PAHs may have a sufficient dipole moment to record a rotational spectrum to match with astronomical spectra, as shown in 2021 when two isomers of cyanonaphthalene were finally identified as matching with astronomical spectra, as shown in Figure 1.

Our experiment aims at understanding the reaction dynamics of PAH molecules following interaction with ionising radiation prevalent in the interstellar medium. Photons in the XUV range can lead to multiple ionisation and trigger complex relaxation processes. Previous studies have shown that larger PAH molecules have efficient relaxation pathways, which transforms the energy of excited electronic states into vibrational excitation. Our work investigates the reaction dynamics of three small PAH molecules, fluorene, phenanthrene and pyrene (Fig. 1), following the initial excitation in a pump-probe experiment. Using the CAMP end station at B2L at FLASH, the time-dependent electron images, ion time-of-flight spectra and ion images were simultaneously acquired [2,3].

Having these multiple observables in our experiment allowed us to observe the ionisation and fragmentation of an XUV photon by a PAH molecule. An example of our data is shown in Figure 2, tracking the momentum of the C\textsubscript{3}H\textsubscript{x} ion as a function of pump-probe delay times. Different time-dependent signatures can be seen in the data, such as feature (1) in the (1, 2) channel. The Y channel refers to the charges in the fragments, with the (1, 2) channel referring to the monocation C\textsubscript{3}H\textsubscript{x} being formed with a dication fragmentation partner. In the (1, 2) channel, the Coulombic interaction between the ions leads to an increase in the observed momentum of the C\textsubscript{3}H\textsubscript{x} ion. An peak in the (1, 2) channel, labelled as feature (1), occurs around t\textsubscript{0}, when the XUV pulse and IR probe overlap in time. This is attributed to highly excited fluorene dications being formed by the XUV photon, before the dications are able to internally relax, the IR pulse induces dissociative ionisation and fragmentation of the trication, thus leading to signal in the (1, 2) channel. If the IR pulse is delayed relative to the XUV pulse, rapid internal relaxation of the dication takes place and the IR pulse instead induces direct dissociation without further ionisation. The resulting peak in the (1, 1) channel, delayed from t\textsubscript{0}, is highlighted as feature (4) where the C\textsubscript{3}H\textsubscript{x} ion is formed with a monocation partner fragment. Fitting the time-dependence of feature (1), backed up with theoretical studies, allows the femtosecond electronic relaxation rate of the fluorene dication to be determined.

Similar features are seen in other channels, for example, feature (2) in the (1, 1) channel. Feature (2) is attributed to the formation of highly excited fluorene monocations by the XUV pulse, close to t\textsubscript{0}, the IR pulse induces dissociative ionisation, forming the dications and fragmenting it. Again, if a delay is introduced before the IR pulse, the monocation can internally decay, and the IR pulse dissociates the monocation, leading to an increase in signal in the (1, 0) channel, labelled as feature (5).

Through combining the ion images, the electron images and the ion TOF data, ultrafast relaxation of the PAHs in the neutral, monocation and dication states has been measured for the first time. These results suggest that ultrafast relaxation may be ubiquitous amongst PAHs, likely due to these molecules possessing a complex potential energy landscape with numerous conical intersections to mediate the relaxation. Yields resulting by performing such a complex experiment and data analysis is a testament to the multiple expertise and collaborative efforts that accompany beamtimes at FLASH. Building on our experience of obtaining rich datasets on PAHs at FLASH, we recently completed another beamtime (August 2021) exploring how different levels of binding between aromatic rings affects the electronic relaxation and fragmentation patterns and we look forward to presenting these results to the community.

References

Original publication
DOI: 10.1038/s41467-021-26193-z

Figure 2
The momentum profile of the C\textsubscript{3}H\textsubscript{x} ion formed through fragmentation of fluorene as a function of XUV-IR laser pulse delay. Positive pump-probe delay times correspond to XUV pulse first, IR pulse second, and t\textsubscript{0}, where the pulses are simultaneous, is denoted by the vertical black dotted line. The (1, 2), (1, 1) and (1, 0) channels refer to the C\textsubscript{3}H\textsubscript{x} ion being formed with a dication, monocation and neutral fragmentation partner, respectively. Some highlighted features are described in the main text. This figure is licensed under CC BY 4.0.
An ultrafast photoprotection mechanism against radiation damage

Real-time tracking of electron dynamics — using attosecond technology — allows preventing dissociation of a DNA building block

Ionising radiation causes damage to DNA when bonds are broken, and a better understanding of the ionisation and dissociation of its subunits would have implications beyond the scope of physical chemistry. We tracked, in real time, the photofragmentation of the DNA subunit adenine ionised by an extreme ultraviolet (XUV) attosecond pulse. We found that ultrafast electronic rearrangement before the atoms start to move opens up an efficient stabilisation pathway, in which a second ionisation step by a shortly delayed laser pulse leads to the production of structurally intact and stable doubly charged adenine.

The interaction of ionising radiation with large biomolecules such as DNA is complex, involving the subunits and the environment. In a bottom-up approach, the study of photoionisation in isolated nucleic-acid bases allows the primary radiation mechanisms to be identified in the absence of environmental effects. In particular, removal of a core or inner-valence electron leads to an internal electronic rearrangement, often governed by correlated processes such as charge migration, shake-up, Auger–Meitner decay or interatomic Coulombic decay (ICD). These processes may initiate a chain of events leading to fragmentation, i.e. damage, and they occur on an extremely fast time scale now accessible by attosecond laser technology [1]. We report the first few-femtosecond time-resolved study of the dissociative dynamics of the nucleic-acid base adenine, with the motivation to track many-body effects before non-adiabatic effects take place, and potentially take advantage of them to control the molecular dissociation.

In our experiment (Fig. 1), adenine is ionised by an isolated sub-300-as pulse containing XUV photon energies from 1.5 to 35 eV, very similar to the kinetic energy range where DNA damage by secondary electrons is most likely to occur [2]. A waveform-controlled 4 fs near-infrared (NIR) probe pulse is combined with the XUV pump pulse using an interferometric approach. Adenine is sublimated and carried to the laser interaction region where the mass spectrum of the resulting ions is recorded as function of the pump–probe delay. Upon XUV ionisation, adenine shows a relatively low photostability with more than 80% of the ion mass spectrum consisting of fragments. Further deposition of energy by the NIR pulse leads to an overall increase of fragmentation. In particular, the yield of small fragment ions is enhanced at the expense of large fragments, indicating that the combination of XUV and NIR pulses leads to further excitation and therefore more efficient bond breaking. One could thus assume that the only effect of using a control NIR laser pulse would be to decrease the photostability of the XUV-ionised molecule.

However, an intriguing observation in the delay-dependent mass spectrum is the appearance of the adenine dication, i.e. the doubly charged intact adenine molecule, at small positive delays as reported in Fig. 2. Although the XUV spectrum extends well above the dication’s 23.5 eV appearance energy, we hardly observe it with the XUV pulse alone. In the process responsible for producing the dication, the added NIR pulse must somehow not facilitate dissociation but surprisingly stabilise the molecule through ionisation.

Thanks to the extremely high temporal resolution of our experimental apparatus, it is clear that to accurately fit the time-dependent yield of the adenine dication we need to include a short non-zero rise-time parameter (τ) of around 2.3 fs, unlike for the other ions where the step can be approximated as instantaneous. On the one hand, such a very short rise time suggests that an electronic rearrangement is involved in the formation of the adenine dication, on the other hand, it is puzzling for several reasons. First, inner-valence electronic relaxations are often assumed to be completed within a femtosecond. Second, nuclear motion would not be expected to make much of a difference so quickly. In order to disclose the origin of our experimental observation, an advanced theoretical model using the non-equilibrium Green’s function method was employed. With the capability of capturing, with unique accuracy, the role of electron correlations, the time-dependent simulation led to the following explanation: The dication is efficiently produced only after an electronic rearrangement (shake-up) has put an electron in a specific high-lying unoccupied state which turns out to take a few femtoseconds. Once this state is populated, there is a higher probability for the NIR pulse to remove a second electron and to promote the molecule in a stable state of the dication. Without this last and crucial ionisation step, the molecule relaxes via various fragmentation pathways.

In conclusion, a multi-electron process was tracked in real-time in ionised adenine which has not been done experimentally for any polyatomic molecule before. That we achieve a degree of control over the molecular dissociation by taking advantage of the electronic dynamics and acting with extreme time resolution before notable nuclear motion begins, is promising for the outlook of chemistry at the natural time scale of electronic dynamics [3,4].

Author contact: Francesca Calegari, francesca.calegari@desy.de

Figure 1
Adenine is exposed to an XUV attosecond pulse and an NIR pulse at an adjustable delay. A mass spectrometer detects the resulting ions. This figure is licensed under CC BY 4.0.

Figure 2
Adenine dication signal as function of pump-probe delay.

References

Original publication
‘Real-time observation of a correlation-driven sub-Fs charge migration in ionised adenine’, Communications Chemistry 4, 73 (2020). DOI: 10.1038/s42004-020-00510-5

Erik P. Månsso,‡ Simone Latza,‡ Pablo Cenit,‡ Vincent Maze,‡ A. Sara Caballero,‡ Enrico Perfettini,‡ Gianluca Stefancic,‡ Hannes Hübner,† Umberto De Gennaro,‡ Matteo C. Castelli,§ Andrea Paolazzi,§ Fabio Frasconotti,§ Luca Polletta,§ Jason B. Greenwood 12, François Légaré 4, Mauro Nisoli 2,5, Angel Rubio 3,13 and Francesca Calegari2,4,‡. 1. Center for Free-Electron Laser Science (CFLS), DESY, Hamburg, Germany. 2. Inst. for Photonics and Nanotechnology CNR-ISM, Pisa, Italy. 3. Max-Planck Institute for the Structure and Dynamics of Matter and Center for Free-Electron Laser Science, Hamburg, Germany. 4. NRC-GAT, Vancouver, Canada. 5. Department of Physics, Politecnico di Milano, Milano, Italy. 6. CINI-GRID, Division of Ultrafast Processes in Materials (LIVIAG-M), Monfortechonfisico, Italy. 7. Dipartimento di Fisica, Università di Roma Tor Vergata, Roma, Italy. 8. INFN, Sezione di Roma Tor Vergata, Roma, Italy. 9. Dipartimento di Fisica e Chimica, Università degli Studi di Palermo, Palermo, Italy. 10. Inst. for the Structure of Matter CNR-ISM, Monfortechonfisico, Italy. 11. Inst. for Photonics and Nanotechnology CNR-ISM, Pisa, Italy. 12. Centre for Plasma Physics, School of Maths and Physics, Queen’s University Belfast, Belfast, UK. 13. Center for Computational Quantum Physics (CCQ), The Flatiron Institute, New York, USA. 14. Institute für Experimentalphysik, Universität Hamburg, Hamburg, Germany.
Attoseconds on a chip
Integrated electronic platform measures optical waveforms in the time-domain

At the core of photon science is the study of how matter interacts with light. Common techniques rely on the measurement of the frequency content of light, while losing critical information on the phase of the wave. It is highly desirable to measure the full waveform in time to gain the complete set of amplitude and phase information. Time-domain measurement techniques are well established in the microwave to THz frequency range and have been fundamental in understanding the full response of matter to electromagnetic radiation. Bringing such tools to higher frequencies, up to the Petahertz regime, can potentially enable exciting new insights into the generation of high harmonics in solids or other highly non-linear phenomena.

Time-domain techniques require sub-cycle time resolution to fully resolve a waveform. One way is to use a sufficiently short electrical or optical gate to measure the instantaneous electric field of the wave without smearing out the individual oscillations. A standard technique to tackle this problem is to use electro-optical sampling to measure low frequency GHz and THz up to mid-infrared waves. Recently it was demonstrated that temporal electric field echoes in the mid-infrared of excited biological molecules can be efficiently captured. These field echoes provide superior molecular sensitivity compared to conventional spectroscopic techniques [1]. However, electro-optical sampling has not been demonstrated to measure waveforms shorter in wavelength than the near-infrared. To further push the envelope in bandwidth, techniques like attosecond streaking have been developed which use attosecond-short XUV pulses to record waveforms up to the PHz bandwidth [2]. While attosecond streaking presents a powerful technique, it is lacking in sensitivity to weak electric fields. Most light-matter interactions result in very weak signatures in the electric field and therefore cannot be detected with attosecond streaking methods.

Recently it has been demonstrated that attosecond electron pulses can be generated by field emission from plasmonic nanoantennas [3,4]. In our work, we demonstrate that attosecond electron bursts from such a nanoantenna can sample near-infrared electric fields, with sub-cycle precision in the time domain corresponding to a maximum frequency of ~ 0.35 PHz. The total energy of the electric field can be just 5 fJ. This technique is less complex in its experimental requirements, capable of operating in ambient conditions without using only pico-loule optical sources. Moreover, these plasmonic nanoantennas can be fully integrated into electronic circuits without need for sophisticated detectors.

To accomplish this scheme, we generated a sub-cycle electronic gate using a 2.5-cycle near-infrared pulse at a wavelength of 1.2 μm with 50 pJ pulse energy to collectively excite a network of plasmonic nanoantennas (Fig. 1a). The sharp tips of the nanoantennas locally enhance the incident electric field by a factor of around 20 to provide enough field strength for field emission of electrons from the antennas’ surface. Due to its high non-linearity, the field emission generates an electron pulse with a duration of around 600 as. This electron pulse is much shorter than a half-cycle of the exciting wave (~ 2 fs) and is collected by an anode wire separated by 50 nm from the antenna tip (Fig. 1b). The attosecond generation process of the electron pulse creates the necessary resolution to sample a second electromagnetic waveform. When a sufficiently weak second field is present during the short generation time, it linearly perturbs the number of generated electrons. By simply measuring the generated current as a function of delay between the electron gate pulse and the second waveform (Fig. 2), the second waveform is recorded.

The results of our measurement are shown in Fig. 3 and demonstrate the detection of the normalised local electric field at the antenna tip. The measured current is proportional to the measured signal’s electric field and is estimated to be at its peak around 5 MV/m with an estimated noise floor of around 500 kV/m. When comparing the recorded waveform to the expected waveform, it shows that our method clearly retrieves the local field of the nanoantenna. With a prior knowledge of the incident laser field, our technique can even measure the characteristic properties of the nanoantenna itself. These results suggest that by using the 600 as electron generation process, measuring frequencies of even higher bandwidth of up to 1 PHz are feasible.

The extreme bandwidth of our measurement technique combined with a high sensitivity down to only femtoseconds will allow direct time-domain studies of highly non-linear phenomena such as high-harmonic generation in solids. Experiments driving solids with strong THz fields exhibit highly non-linear responses, which can be captured over many octaves with a single measurement setup. Another avenue for exploration will be the fingerprinting of biologically relevant molecules in the notoriously hard to detect mid-infrared spectral region, enabling efficient detection of many species of molecules.

Overall, our results enable exciting possibilities for future experiments of sampling electric waveforms in the time-domain over broad frequency ranges with only a single on-chip detector.

Author contact: Felix Ritzkowsky, felix.ritzkowsky@desy.de

References

Original publication

Mina R. Banerji, Felix Ritzkowsky1,*, Marco Turcatti1,†, Paja Yang1, Darin Callahan-Mor2, Willem P. Putnam1,†, Franz X. Kärtner†, Karl K. Berggren† and Philip D. Kauzlek1
1. Massachusetts Institute of Technology, Cambridge, USA
2. Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
3. University of California at Davis, Davis, USA
Chirping FEL pulses
Spectro-temporal measurements in transient absorption spectroscopy

Time-resolved ultrafast spectroscopy with atomic site specificity is one of the key applications of free-electron lasers (FELs). Hereby transient absorption spectroscopy, an all-optical technique which is well-established in the infrared and visible regime, creates a promising new direction for FELs. In a nutshell, one measures the absorption spectrum of an FEL pulse after transmission through a target (gas, liquid, plasma or even solid) by dispersing the pulses with a grating-based spectrometer. Probing with a second FEL pulse at various time delays, one can thus time-resolve the initiated electronic dynamics. Independently tuning the photon energies of the pump and probe pulses increases the possibilities of the technique further.

One particular benefit of transient absorption spectroscopy is its combined high spectral and temporal resolution which is not limited by the Fourier time-bandwidth relationship. An absorption measurement of a sample is hereby recorded through the detection of the attenuated light in forward direction with a grating-based photon spectrometer. Individual spectral lines can be covered and resolved within the spectral bandwidth of the probing FEL spectrometer. Individual spectral lines can be covered and resolved within the spectral bandwidth of the probing FEL spectrometer. Individual spectral lines can be covered and resolved within the spectral bandwidth of the probing FEL spectrometer. Individual spectral lines can be covered and resolved within the spectral bandwidth of the probing FEL spectrometer. Individual spectral lines can be covered and resolved within the spectral bandwidth of the probing FEL spectrometer. Individual spectral lines can be covered and resolved within the spectral bandwidth of the probing FEL spectrometer. Individual spectral lines can be covered and resolved within the spectral bandwidth of the probing FEL spectrometer.

Here, we utilise an ultrafast atomic plasma switch which allows us to measure the spectro-temporal distribution of FEL pulses during a transient absorption experiment in neon. The experiment has been carried out at the open-port beamline BL2 at FLASH. It is equipped with a split-and-delay unit [1], which cuts the FEL beam profile in two halves, spatially separate. Subsequently, two identical copies (‘pump’ and ‘probe’) of the FEL pulses with a variable temporal delay are focused into a moderately dense neon gas target. After the interaction the probe pulse is again spatially separable by means of mechanical slits and is detected with an XUV grating spectrometer.

The measurement technique and experimental setup is described in more detail in Ref. [2] and is illustrated in Fig. 1. The first pump pulse efficiently ionises the target, such that, up to 70% doubly charged Ne2+ ions are rapidly produced. These are nearly transparent to XUV radiation while neutral and singly charged neon still absorb quite strongly. The plasma target thus acts like an ultrafast switch for the transmission of the probe pulse where the neon atoms respond quasi instantaneously to the pump pulse following the well-understood effect of atomic photoionisation of valence electrons. Depending on the time delay between pump and probe pulses, only those parts of the FEL probe pulse are then efficiently transmitted that see the ionised transparent medium. This is similar to the action of ultrashort atomic plasma switches, which act like a temporal knife edge, the arrival times of the FEL pulse’s different spectral components are directly encoded in the probe-pulse’s transmission spectra.

Time-resolved ultrafast spectroscopy with atomic site specificity is one of the key applications of free-electron lasers (FELs). Hereby transient absorption spectroscopy, an all-optical technique which is well-established in the infrared and visible regime, creates a promising new direction for FELs. In a nutshell, one measures the absorption spectrum of an FEL pulse after transmission through a target (gas, liquid, plasma or even solid) by dispersing the pulses with a grating-based spectrometer. Probing with a second FEL pulse at various time delays, one can thus time-resolve the initiated electronic dynamics. Independently tuning the photon energies of the pump and probe pulses increases the possibilities of the technique further.

Figure 2 shows the experimental result for the relative absorption as a function of the photon energy and the time delay of pump and probe FEL pulses. The frequency power spectrum of the relatively broadband pulses is depicted in the upper region of the figure. In the case shown here, the higher photon energies of the probe pulse arrive ahead in time and are therefore only transmitted at a greater positive delay (the pump pulse arrives first) than the lower-frequency components that follow later. This is indicated in the figure by the knife symbols. The temporal absorption edge is therefore tilted and slightly curved. From this behaviour, the temporal frequency evolution in the pulses, i.e. their chirp, can be directly determined. This is also in good agreement with simulations.

This new method allows direct access to the temporal and spectral signature of the FEL pulses within a transient absorption spectroscopy experiment. Knowing the arrival times of the different frequency components not only improves the temporal resolution of an experiment when probing different electronic transitions, but also the spectro-temporal waveform of the FEL pulses can be further optimised for more efficient pumping, e. g. for triggering a chemical reaction in a molecule from a specific atomic site. The realisation in the short-wavelength XUV to

References

Original publication

Thomas Ding, Marc Rebholz1, Leonart Außfnger1, Maximilian Hartmann2, Vost Stool1, Alexander Magunia1, Philipp Birk1, Sergio Dimitriou Bourian1, David Racher1, Camila da Costa Castanheta1, Patrick Rupprecht1, Fenghua Mi1, Andrew R. Atten1, Thomas Gummert1, Z.-Ming Loh1, Sebastian Roling1, Marco Butz1, Helmut Zacharias1, Stefan Dichter1, Rolf Trusch1, Arnd Eisele1, Stefan M. Cavaletto1, Christian Ott1 and Thomas Pfeifer1
1. Max-Planck-Institut für Kernphysik, Heidelberg, Germany
2. Department of Chemistry, University of California, Berkeley, USA
3. Laboratorium für Physikalische Chemie, ETH Zurich, Switzerland
4. Division of Chemistry and Biological Chemistry, and Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore
5. Physikalisches Institut, Westfälische Wilhelms-Universität Münster, Germany
6. Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
Towards ultimate time resolution in speckle correlation dynamics

Recording nanosecond dynamics with pulsed synchrotron light

Recording speckle movies via X-ray photon correlation spectroscopy (XPCS) enables the study of slow dynamics in complex systems at synchrotron sources on time scales from milliseconds to hours. The time resolution of XPCS is defined by the detector frame rate and the X-ray pulse repetition rate. Recent progress in ultrafast detector development brought a very promising prospect into perspective for utilising the MHz pulsed nature of storage rings to extend the time resolution down to nanoseconds. By resolving single X-ray pulses of PETRA III with the AGIPD detector we measured nanosecond equilibrium dynamics in a colloidal liquid, marking the first demonstration of pulse-resolved XPCS at a storage ring. Successful demonstration of this technique paves the way to study dynamics of very relevant soft matter biological systems at future diffraction-limited storage rings such as PETRA IV.

Low coherent flux of synchrotron sources presents a challenge in acquiring sufficient photon statistics on pulse to pulse basis. Up to now only FEL studies have proven that it is possible to obtain meaningful speckle patterns from low intensity scattering patterns (>0.005 photons/pixel). Here, we demonstrate the feasibility of using single-pulses of PETRA III together with the AGIPD to study nanosecond dynamics in a system of colloidal particles via XPCS.

We have carried out conventional XPCS with 8 keV photons at the coherence beamline P10 of PETRA III. The experimental scheme is shown in Fig. 1. The 40-bunch filling pattern of the storage ring delivered X-ray pulses, each separated by 192 ns. Colloidal silica nanoparticles with a radius of 180 nm dispersed in water were filled into a 700 μm thick glass capillary. The challenge of mimicking the first-order speckle correlation spectroscopy of single X-ray pulses requires special X-ray optics while XSVS requires very precise control of the X-ray pulse duration. Recent significant improvements in X-ray detector readout time and detection efficiency allowed to employ the intrinsic time structure of the storage ring to XPCS. In particular, the AGIPD detector has been developed for resolving MHz pulsed X-ray beams.

In XPCS, each speckle pattern collected in the far field detection plane corresponds to the spatial arrangement of the colloidal particles. Upon motion of the particles, the corresponding speckle pattern changes accordingly. Hence, the dynamics of the investigated sample is traced by measuring temporal speckle correlations of intensity fluctuations and calculating an auto-correlation function $g^2(τ)$. The value of the $g^2(τ)$ function at time zero corresponds to the speckle contrast and is related to the coherence properties of the X-ray source. In our colloidal liquid, $g^2(τ)$ follows a single exponential decay function with a characteristic time $τ_c$ of the system. For $τ >> τ_c$, the lack of correlation between the speckle patterns results in $g^2(τ)$ converging to unity. Figure 3a shows the normalised auto-correlation functions as a function of delay time with 192 ns resolution for varying wave-vector transfer Q. For Brownian diffusion, $τ_c$ is related to the free particle diffusion coefficient D via $D = τ_c/τ_c^2$. Figure 3b shows the corresponding fit of the model to the data, proving $τ_c$, which is very good agreement with the expected diffusion coefficient.

In conclusion, the advent of future diffraction-limited storage rings and the technological development of ultrafast detectors pave the way for XPCS studies down to nano-second timescales. The study is also very timely in the context of the ongoing PETRA IV project, i.e. the upgrade of PETRA III to a diffraction-limited storage ring with expected 400 times higher coherent photon flux.

References

Author contact: Wonhyuk Jo, wonhyuk.jogdesy.de
Wojciech Rosseker, wojciech.rosseker@desy.de

Original publication
DOI: 10.1107/S2052252520015778

Wonhyuk Jo1, Fabian Westermeyer1, Rastan Ryssen1, Olaf Leipold1, Florian Schulz1, Shifunlu Tabei1, Assen Stoychev2, Alexander Klyuev2, Torsten Laurus1, Allahgholi Aschkan1, Michael Spang2, Alexander Reis1, Torsten Lauras1, Mahshid Aschkan1, Alexander Klyuev1, Ulrich Trunk1, Heinz Graafsma1, Gerhard Grüber1 and Wojciech Rosseker1

1. Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
2. Institute of Physical Chemistry, Universität Hamburg, Hamburg, Germany
3. The Hamburg Centre for Ultrafast Imaging (CUI), Universität Hamburg, Hamburg, Germany
New XFEL techniques to understand rapid synthesis at high pressures and dynamics of planetary interiors

Pulsed heating with the European XFEL opens a new pathway to high-pressure synthesis

Scientists using static high-pressure experiments have dreamed of performing time resolved X-ray diffraction experiments with a MHz probe rate during laser heating or dynamic compression within a Diamond Anvil Cell (DAC). By doing so, contamination of the samples through e.g. the diffusion of carbon from the anvil or other elements enclosing the sample can be avoided, which becomes an increasing challenge at higher pressures and temperatures. Such experiments are now possible at the High-Energy-Density (HED) instrument of the European XFEL by exposing samples in a DAC to 20 fs long X-ray pulses at 18 keV and MHz repetition rates. Furthermore, the highly intense X-ray pulses can be used to heat a sample mixture and synthesise compounds such as ε-iron nitride very rapidly. This new setup is enabling unprecedented time resolved X-ray diffraction and imaging experiments, opening new avenues to explore the dynamics of planetary interiors or new synthesis pathways to yet unknown materials.

However, the synthesis of a stoichiometrically pure and homogeneous form of ε-iron nitride is rather challenging because of the inability to control the reaction rate of nitrogen and iron in a conventional high-pressure and -temperature setup. Using the new static DAC setup at the HED instrument (Fig. 1) it was possible to rapidly synthesize non-stoichiometric but homogeneous ε-Fe₃Nₓ with x ≈ 0.33 using 20 fs pulses from the European XFEL arriving at a repetition rate of 2.25 MHz (Fig. 2a). A 4 µm-thin iron foil was pre-compressed in nitrogen gas to 5 GPa. When the sample was irradiated by pulses from the European XFEL repeating at every 443 ns, sample temperatures in excess of 1400 K were detected through the transformation of α- to γ-iron and subsequently, the uniform reaction of Fe and N along the beam path to form Fe₃Nₓ. This demonstrated that the activation energy provided by intense X-ray exposures with an XFEL can be coupled with the source time structure to examine the time dependence of synthesis reactions under high pressure conditions.

The synthesis of Fe₃Nₓ was not only demonstrated in the 20 fs X-ray diffraction images collected at the HED instrument but was also subsequently confirmed by X-ray diffraction mapping of the irradiated area in the DAC at the beamline PO2.2 at PETRA III. Further analysis of the recovered samples using the FIB and STEM, including chemical analysis, confirmed the homogeneity of the Fe₃Nₓ in the irradiated sample area (Fig. 2b). Coupling intense X-ray laser pulses with sufficiently high energy to initiate distinctive chemical reactions emerges as a new research field in static high-pressure science with the potential to study reaction pathways at high pressure. This is particularly true since recently the Adaptive Gain Integrating Pixel Detector (AGIPD) has become operational to perform femtosecond short-diffraction imaging after each pump pulse providing a nanosecond movie with femtosecond snapshots into the synthesis pathway. Systematic exploration of chemical reactivity across different reactants at extreme pressures and temperatures could lead to the discovery of hitherto unknown compounds and pathways not only of industrial relevance but also for a better understanding of the chemistry of astrophysical processes.

Besides the use of the X-ray beam for the exploration and search for new fast synthesis pathways, yet other types of DAC setups at HED are planned to be used for fast compression experiments using a dynamic Diamond Anvil Cell (dDAC) [2] and a pulsed laser heating technique [3]. The latter could heat a sample such as iron or an iron-rich laser at very high pressures to simulate and study the core of planetary bodies such as the Earth and super earths. The methodology of pulsed laser heating and dDAC experiments have been discussed in detail by Liermann et al. (2021) (see original publication), indicating that contaminations of the sample can be avoided by rapidly exposing the sample to the short X-ray pulses of the European XFEL. In this work it was shown how a set of 25 X-ray pulses can be used to cover the laser-induced X-ray heating pulse of 23 µs duration with a 6 µs material response [3].

In addition, fast dDAC experiments make use of the maximum pulse train length of the European XFEL of 20 (600) µs to collect up to 325 images on the AGPD detector to cover a fast compression path. This may be used to explore the compression and strain dependence of phase transitions in low- and high-z materials and even the formation of amorphous ice as described recently [4] as a function of the compression rate.

References

Author contact: Hannes-Peter Liermann, hannes-peter.liermann@desy.de

Yongjae Lee, yongjaelee@yonsei.ac.kr

Cornelius Strohm, cornelius.strohm@desy.de

Stewart McWilliams, rs.mcwilliams@ed.ac.uk

References

2. (a) Carbonino demonstrating the synthesis of ε-Fe₃Nₓ in the DAC using 20 fs long X-ray pulses. (b) STEM image of the iron foil area irradiated by the XFEL X-ray beam indicating that ε-iron nitride with a composition of Fe₃Nₓ was formed.
Automatic differentiation is capturing X-ray images

Realising soft X-ray ptychography at FLASH

Differentiable programming (also known as automatic differentiation) is a broadly used tool in optimisation and large-scale artificial intelligence data handling. The gradient values crucial for numerical optimisation in X-ray ptychography imaging are computed with automatic differentiation.

Hard X-ray imaging enables quantifying heavy elemental compositions, crystal lattice structures and strain fields in crystalline materials. On the other hand, imaging of complex chemistry with light elements possessing low X-ray scattering cross-sections becomes feasible with soft X-rays (below 1 keV photon energy) [1]. Due to the limitations of optics at soft X-ray wavelengths, imaging at short wavelengths is challenging. Lensless imaging methods are a powerful alternative aiming to measure the diffraction patterns of a sample and to algorithmically convert them into a high-resolution image—a well-known technique that is broadly called phasing. Coherent diffraction imaging (CDI) became an important scientific field with the emergence of highly intense synchrotron and FEL sources combined with the advancement of X-ray detectors. Advanced computation enables the phasing of diffraction patterns; a revolutionary step towards discovering the nanoworld. Nevertheless, the CDI phasing techniques have a limited ability to retrieve images for extended samples or complex-valued samples from single measurements [2].

Ptychography was introduced as a scanning diffraction imaging technique. A series of diffraction patterns is recorded by scanning a finite X-ray probe over an extended sample with an overlap between the adjacent scan positions (Fig. 1) [3]. Afterwards, the stack of diffraction patterns is numerically converted to retrieve an image of the sample and, at the same time, the illuminating pulse. The redundancy in measurements removes the ambiguities commonly linked to single-shot CDI of extended samples [4]. Thus, X-ray ptychography gained significant momentum to study large samples, especially at synchrotron sources in the hard X-ray regime.

A high degree of spatial coherence and exceptional photon flux, together with ultrashort pulses, make free-electron lasers ideal facilities for ptychography imaging [5]. However, standard ptychography algorithms require a light pulse that is stable from shot to shot. Thus, the fluctuations of the FEL pulses, which are typical for the self-amplified spontaneous emission (SASE) process, complicate the implementation of this technique and the data analysis at X-ray sources like FLASH.

X-ray ptychography can be recognised as an optimisation problem. The sample can be recovered by optimising an error metric that quantifies the difference between measured and synthetic diffraction patterns. Most of the optimisation approaches used for ptychography rely on an analytical calculation of the error metric’s derivatives. Any change in the optimisable parameters potentially requires massive, time-consuming and complicated recalculation. An elegant way to solve this problem is to use various numerical methods that allow automatic differentiation (AD) of the error metric with respect to optimisable parameters. AD is a family of computational techniques that automatically calculate derivatives for numerical functions [6].

Also, AD has been widely used in deep learning to automate optimisation tasks.

We have successfully established a prototype-adaptive automatic differentiation (A-AD) routine for streamlining ptychography at FELs. Fluctuations of pulses, partial spatial coherence (typical for FLASH) and scanning imperfections can be numerically integrated into the model. The entire routine uses a forward model. This model guesses measured diffraction patterns. Then, the routine optimises the error metric with different optimisation methods to obtain a global minimum. The forward model, the type of error metric and the optimisation approach can be changed independently without the need for any analytical re-derivation. The computational power of the A-AD routine to analyse the measured data provides very high flexibility for performing ptychography experiments.

For the first time, ptychography was performed at the FLASH2 beamline FL24 which is equipped with KB microfocusing optics employing bendable mirrors [7]. By using the A-AD model for reconstruction, a resolution below 3 µm was achieved at 1.35 nm wavelength for an intermediate-field experiment (Fig. 2). This geometry was chosen to realise a non-destructive setup for ptychography at FELs where the sample is placed a few centimetres downstream of the focus. Without integrating fluctuating FEL parameters, such as beam position instabilities and partial coherence, into the ptychography routine, the reconstructions permanently fail to converge. During the ptychography experiment at FLASH, near- and intermediate-field diffraction patterns of a test sample were measured with the same setup, and collected datasets were retrieved successfully. Additionally, the A-AD ptychography routine yielded insight into the mode structure of every FEL pulse and captured them shot-by-shot. Single-shot characterisation of FEL pulses is of vital importance to precisely monitor the experiment parameters and perform successful imaging experiments.

Applications of our A-AD routine can be extended to the recently growing field of electron ptychography, as well as 3D ptycho-tomography at FELs and synchrotrons. A-AD ptychography paves the way to non-destructive and high-resolution imaging at FEL facilities. Soft X-rays down to 1.5 nm, coupled to high-dynamic-range soft X-ray detectors (such as PERCIVAL developed at DESY) and combined with high-performance computing algorithms, open new avenues to study complex engineered materials at FLASH.

Original publication

Konstantin Ehrhardt1, Massoud Mehrjoon, Mihai Buciu-Logan1, Barbara Koch1, Susa Kreis1, Martin Seeger1, Mihai Pop2 and Elke Ploenjes1

1. Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
2. Lund University, Lund, Sweden

References

A microscope with soft X-ray spectroscopy eyes

Soft X-ray imaging spectroscopy with micrometre resolution to analyse domains in quantum materials

Functionality of quantum materials appears through the correlated interaction of microscopic degrees of freedom like spin, charge, orbital and lattice [1]. Their intricate energy balance enables the material to display hugely different properties as a result of small perturbations, while often spatially inhomogeneous textures lead to separate electronic properties in domains which extend from the nano- to the micrometre scale [2]. An understanding requires electronic structure studies to be combined with high-resolution imaging. Here, we present a setup with a resolution of better than 2 µm in soft X-ray resonant inelastic and elastic scattering as well as absorption spectroscopy. With such a setup, percolation networks and spatial details of phase transition behaviour can be studied directly in the electronic structure.

A few examples, which highlight the importance of phase coexistence and inhomogeneity in solids, include the high-T_c superconductor HgBa_2CuO_4+y [3], or vanadium dioxide with its insulator-metal transition close to room temperature [4].

Soft X-ray spectrometers, like X-ray absorption spectroscopy (XAS) and resonant inelastic X-ray scattering (RIXS), are well-established techniques for the study of the electronic structure of quantum materials. By resonantly addressing core transitions in solids, selected elements are probed with sensitivity for charge, spin and orbit. However, the detected signal is usually averaged across the entire illuminated area on the sample, which typically extends tens of micrometres in each dimension, thus averaging over multiple domains of potentially different character.

Our RIXS imaging setup (Fig. 1a) successfully demonstrates XAS and RIXS in combination with imaging having a spatial resolution better than 2 µm. The measurements were carried out at the PETRA III beamline P04. There is an off-axis Fresnel analyser zone plate (AZP) at the heart of the setup which images the sample in one direction and disperses scattered X-rays in the orthogonal dimension [5]. Using a 2D charge-coupled device (CCD) detector yields the combined imaging and spectroscopic information on the two dimensions of a single exposure.

With the beamline exit slit opened as far as possible, the highest possible X-ray flux is transmitted onto the sample. A linear zone plate focuses the resulting X-ray ‘rainbow’ in the horizontal to a width below 1 µm (Fig. 1a). In the vertical, this line focus measures approximately 1 mm and contains spatially separated photon energies from 528.2 eV to 531.8 eV when the central photon energy is set to 530 eV (oxygen K-edge). The energy resolution in the measured data is preserved despite this broad incident photon energy bandwidth, since the AZP disperses the emission from every illuminated point separately in this imaging setup. In summary, a single 2D detector exposure contains both spatial information and incident energy on the vertical axis, as well as emitted energy on the horizontal axis.

The spatial resolution was determined via a Siemens star test structure (Fig. 1b) with a diameter of 500 µm. Bright and dark structures consist of vanadium oxide and silicon nitride, respectively. Fluorescence contrast is created by exciting electron fluorescence only in the vanadium oxide parts. With the focus line extending across the test structure, a detector image as shown in Fig. 1c is obtained. Scanning in horizontal direction and adjusting the detector image between the white lines as indicated in Fig. 1c allow reconstructing the test structure as shown in Fig. 1d. Using a Fourier ring correlation algorithm, the spatial resolution was determined to be 1.8 µm.

The flexibility of this RIXS imaging setup to record versatile information becomes apparent through the opportunity of different acquisition modes: 1) For homogeneous samples, a so-called RIXS map (inelastic scattering spectra for a range of excitation energies) can be obtained in a single detector exposure. 2) For heterogeneous samples with a rather featureless excitation spectrum, e.g. fluorescence, the line focus in combination with a scan in the orthogonal direction can be used to map the sample (this was used for determination of spatial resolution on the Siemens star test structure, see above). Also, unidimensional spectroscopic imaging can be used to measure XAS and RIXS in dependence of one spatial dimension by scanning only the incident photon energy (see Fig. 2).

For heterogeneous samples with a complex excitation spectrum, a combined scan of focus line position and incident photon energy can be obtained to provide a high-dimensional information matrix of the sample.

In summary, the RIXS imaging setup offers flexibility which can be adjusted to individual experimental needs. While making use of the entire bandwidth transmitted through the beamline monochromator, different schemes are proposed of how electronic structure analysis can be combined with microcrystalline resolution for the domain-resolved study of novel quantum materials.

Author contact: Jan O. Schunck, jan.schunck@desy.de

Martin Bey, martin.bey@desy.de

References

Original publication

Jan O. Schunck 1,2, Florian Doring 3, Benedikt Rosner 3, Jens Buck 4,5, Robin Y. Engel 1,2, Piter S. Miedema 1, Sanjoy K. Mahatha 1, Moritz Hoesch 1, Jan O. Schunck, Frankfurt/Darmstadt, Germany.

1. Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
2. Universität Hamburg, Hamburg, Germany
3. Paul Scherrer Institut PSI, Villigen, Switzerland
4. Institut für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
5. Nanostrukturfabrikke, Technische Universität Braunschweig, Kiel, Germany
6. Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
7. Heinrich-Hertz-Institut Berlin für Höchstfrequenzforschung, Berlin, Germany

Figure 1
a) Experimental setup. The monochromator exit slit is fully opened. A linear zone plate focuses transmitted energies to a vertical line of sub-micrometre width at the position of the sample. An analyser zone plate combines imaging and spectroscopy. Along the vertical, the sample is imaged, while X-ray emission is dispersed in the horizontal. b) Test structure for measurement of spatial resolution in the horizontal (dark: vanadium oxide, bright: silicon nitride). c) Single-exposure detector image of the test structure. The signal is averaged between the white lines along the horizontal and comprises the half-sized slice of the reconstruction shown in d). This procedure is repeated while scanning the sample along the horizontal in steps of 250 nm. Scale bars are 50 µm.

Figure 2
An energy scan on VO_x, squares of size 30 µm x 30 µm yields a 3D dataset. Each detector exposure is a 2D image of position vs. emitted energy (bottom projection). Scanning the incident photon energy additionally yields a RIXS map (left plane) and spatially resolved partial fluorescence yield absorption data (right plane). As an example, the 2D iso-surface in the centre visualises relative intensities of 70%.

78 | Science Highlights | Science of laser and X-ray sources — methods and developments
First determination of the bulk spin polarisation of magnetite

Imaging spin-filtering meets time-of-flight energy recording

Magnetite (Fe₃O₄) has attracted humans for ages because of its magic magnetic properties which helped first pioneers navigate through deserts and sailors across the oceans. Wegener’s theories on continental drifts were confirmed by changes of the earth magnetic field imprinted in magnetite. For a long time, theorists have predicted a hidden electronic structure with itinerant, uncompensated minority electrons. However, this comes at a price, as high photon energies also lead to a sharp reduction of the photoionisation cross sections and hence signal strength. The signal strength is further reduced by the pronounced surface sensitivity of conventional electron spectroscopies. For these reasons, half-ferromagnetism in magnetite has remained elusive up to now. Here, we have developed a new experimental approach to directly study the intrinsic spin polarisation in magnetite using bulk-sensitive hard X-ray photoelectron spectroscopy (HAXPES). This non-destructive technique utilises the photoelectric effect to determine the electronic structure in a solid. Due to the high photon energy of several keV, the emitted photoelectrons propagate at high kinetic energies, thereby significantly enhancing the information depth up to 10–20 nm and overcoming the atomic surface sensitivity of photoelectron microscopy. This setup enables full-field momentum imaging [1]. A schematic view of the microscope is shown in Fig. 1.

![Figure 1](Image)

Photoelectron trajectories (side view) and principal operation of the newly set up momentum microscope at beamline P22. Notice that the spin-filter also preserves the energy information encoded in the time-of-flight signal (see inset), resulting in a 3D (h, k, Eₛ) recording scheme.

In our study we used an MBE-grown Fe₃O₄(1 1 1)/ZnO(0 0 2) (0 0 1) film, cooled down to 30 K and magnetised parallel (+) or antiparallel (−) to the quantisation axis of the spin-filter. HAXPES performed with 5 keV photons was employed to measure the valence band for opposite magnetisation directions using the time-of-flight momentum microscope equipped with the spin-filter crystal. Figure 2a shows both photoelectron spectra along with the resulting spin asymmetry A = (|+|−|−|)/|+|+|−|, where + and − denote spin-up and spin-down electrons due to spin–orbit interaction. This established magnetite as a potential key material for spin-based information technology. Having fostered interest on magnetism for centuries, magnetite might again attract scientists in a hot research field.

![Figure 2](Image)

(a) Valence-band spectra measured with an excitation energy of hv = 5 keV for two opposite in-plane magnetisations denoted by + and − together with the calculated energy-dependent asymmetry A. (b) Spin polarisation of the magnetite film. The line serves as a guide to the eye. It is negative at E_lead = 0 eV with a value of −80% between 0.60 and 0.95 eV, there is a sign change of the polarisation. The error bars denote the statistical error.

Taking statistical errors into account, as well as the fact that the magnetite film was measured in remanence (and therefore not fully magnetised at 30 K), yields an experimental estimate of 80 ± 10%.

This value indeed strongly points to a complete minority spin polarisation for charge carriers in agreement with theoretical predictions from density-functional theory [2]. This establishes magnetite as a potential key material for novel spin-based information technology. Having fostered interest on magnetism for centuries, magnetite might again attract scientists in a hot research field.

Author contact: Matthias Schmitt, matthias.schmitt@physik.uni-wuerzburg.de

Michael Sing, sing@physik.uni-wuerzburg.de

References

Original publication

Matthias Schmitt 1, Dian Krítmová 2, Sergii Chernov 2, Sergey Babenkov 2, Dmitry Kusyev 2, Olga Fedotkina 2, Katarzyna Medjanik 2, Evgeny Matzevov 3, Andrei Gloskovskii 3, Christoph Schlueter 2, Armin Winkelmüller 4, Larnart Dudy 5, Hans-Joachim Elmers 1, Gerd Schönhense 2, Michael Sing 1 and Ralph Claessen 1

1. Physikalishes Institut und Würzburg-Dresden Cluster of Excellence cfaed, Julius-Maximilians-Universität, Würzburg, Germany
2. Institut für Physik, Johannes Gutenberg-Universität, Mainz, Germany
3. Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
4. Academic Centre for Materials and Nanotechnology (ACMin), AGH University of Science and Technology, Krakow, Poland
5. INL, Synchrotron, Saint-André, France
Light Sources and User Infrastructures

- FLASH
- PETRA III
- DESY NanoLab
- European Molecular Biology Laboratory Hamburg
- GEMS branch at DESY
- DESY Photon Science at the European XFEL
In 2021, the pandemic situation has still substantially hampered the scientific user operation at FLASH. Nevertheless, 23 out of 31 initially planned user experiments could still be performed successfully. However, eight beamtimes had to be cancelled in the first half of 2021, most of them due to the extended lockdown in Germany as well as travel and quarantine restrictions for users from abroad. Out of the 23 experiments, 19 (83%) were conducted at local experimental end stations operated by FLASH personnel who put in extensive efforts to substitute manpower for the user groups in addition to their other duties. Due to the pandemic situation, fewer users were allowed on site but all made best use of video conferences and remote access to the data. The local teams were thus often complemented by colleagues abroad who contributed quite efficiently by taking care of near real-time data analysis and who provided input and feedback for necessary adaptations of the experimental plan.

Unfortunately, the decreased number of operable experiments also led to less parallel operation of FLASHL and FLASH2. Thus, in only about 20% of the cases, experiments matched for parallel operation in both experimental halls. Under normal conditions, the degree of parallel user operation was 30–40%, hence yielding substantially more beamtime for users.

Setup of ‘time-delay compensating monochromator’ beamline FL23 started

The new time-delay compensating monochromator (TDCM) beamline, previously presented in the DESY Photon Science Annual Report 2019 [1,2], is currently set up in the FLASH2 experimental hall ‘Kai Siegbahn’ (Fig. 1).

The double grating monochromator design of beamline FL23 will provide a narrow spectral bandwidth of the FLASH2 photon pulses while preserving the ultrashort free-electron laser (FEL) pulse duration of less than 50 fs. A Kirkpatrick-Baez (KB) mirror system employing bendable mirrors focuses the monochromatised radiation down to about 5 × 5 μm² beam size at the target, independent of the monochromator slit width (Tab. 1). Due to a movable exit arm, the monochromator can be used in double- or single-grating configuration. The latter allows higher throughput and is particularly interesting when using harmonics at short wavelengths. FL23 will offer an open port for user or FLASH provided mobile end stations.

Table 1: Key parameters of the time-delay compensating monochromator beamline FL23

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wavelength (nm)</td>
<td>1.2–20.0 (including harmonics)</td>
</tr>
<tr>
<td>Pulse length (fs)</td>
<td>< 50</td>
</tr>
<tr>
<td>Resolution (A/ΔA)</td>
<td>≤ 2000</td>
</tr>
<tr>
<td>Flux at beamline end (photons/pulse)</td>
<td>10ⁱ⁰</td>
</tr>
</tbody>
</table>

Meanwhile, most of the beamline components have been built and delivered, and the installation of the individual components has started in October 2021. Figure 2 shows the assembly of the interior monochromator mechanics ongoing in November 2021.

Assuming no further delays (in particular, pandemic-related), we expect to be ready for commissioning of beamline FL23 with beam towards the end of 2022 and will accept experiments with ‘friendly’ users in 2023.

Making space for the next generation of pump–probe lasers

In the FLASH1 experimental hall ‘Albert Einstein’, the 45 m² pump-probe laser hutch was cleared out during the last months in order to provide space for a new, modern laser system. In autumn 2020, a new pulse train laser had already been set up in a laser tent close to the PG2 beamline end. Since then, it has replaced the old pulse train laser that was operated in the laser hutch for over fifteen years and has been fully decommissioned by now. Once the interior of the pump–probe laser hutch has been completely refurbished, the air-conditioning system on its roof will be upgraded as well to meet the new, enhanced requirements for temperature stability and humidity control. Afterwards, in autumn 2022, an established 10 Hz, millijoule laser system will be re-installed for the transition period of about one and a half years between the two FLASH2020+ upgrade shutdowns. This system will provide intense laser pulses for atomic and molecular physics as well as warm dense matter experiments at the beamlines BL1 and BL5, whereas the PG beamlines will be served by the aforementioned pulse train laser system.

After the planned second shutdown in 2024, the new pulse train laser system will provide shorter and more intense pulses to all beamlines in the FLASH1 hall. It is presently under development and will be installed in the refurbished, slightly enlarged laser hutch.

PolarIX — measuring the FEL pulse length by ‘streaking’ the electron bunches

During the shutdown in winter 2020/2021, a new accelerator structure named PolarIX [3] was installed in the FLASH2 accelerator tunnel just behind the SASE undulators (Fig. 3). Developed in a collaboration of DESY, PSI and CERN, PolarIX is a transverse deflecting structure (TDS) similar to a streak camera. It kicks the accelerated electron bunches to the side with a time-dependent strength of this kick. This way, the longitudinal position along the electron bunch is mapped onto a horizontal coordinate on an imaging screen, or in other words, the arrival time of the individual electrons is mapped to a spatial coordinate. In the longitudinal phase space of the electrons, it allows to measure both, the energy profile as well as the charge distribution along the electron bunch. The longitudinal charge distribution can also be used to deduce the FEL pulse length with femtosecond time resolution. Since the electrons lose part of their energy during FEL emission, their energy profile behind the undulators can also be used to measure the FEL photon pulse length in a complementary way.

Unique combination yielding new scientific opportunities at beamline FL26

In October 2021, the first FEL-pump-HHIG-probe experiment was successfully conducted at the ‘Reaction Microscope’ (REMI) end station at FLASH2 beamline FL26. This was a collaborative effort of a large team from the Max Planck Institute for Nuclear Physics (MPIK) in Heidelberg led by Christian Ott and Thomas Pfeifer together with colleagues from the Leibniz University Hannover and many colleagues from different groups at DESY. The broadband...
high-harmonic generation (HHG) spectrum was utilised in femtosecond XUV transient absorption spectroscopy for tracking the dissociation of molecules and identifying the electronic states of the atomic fragments. This effect is highly relevant for understanding the interaction of extreme ultraviolet radiation (XUV) with atmospherically relevant molecules. The transient absorption was measured over the full harmonic spectrum of the HHG source. For that purpose, the colleagues from Heidelberg had installed a refocusing mirror behind REMI, focusing into their own interaction chamber, installed just after REMI. For that purpose, the colleagues from Heidelberg had installed a refocusing mirror behind REMI, focusing into their own interaction chamber, installed just after REMI. This experimental chamber was complemented by a grat- installed a refocusing mirror behind REMI, focusing into their own interaction chamber, installed just after REMI. This experimental chamber was complemented by a grat- their own interaction chamber, installed just after REMI. For that purpose, the colleagues from Heidelberg had installed a refocusing mirror behind REMI, focusing into their own interaction chamber, installed just after REMI. This experimental chamber was complemented by a grat- their own interaction chamber, installed just after REMI. For that purpose, the colleagues from Heidelberg had installed a refocusing mirror behind REMI, focusing into their own interaction chamber, installed just after REMI. This experimental chamber was complemented by a grat- their own interaction chamber, installed just after REMI. For that purpose, the colleagues from Heidelberg had installed a refocusing mirror behind REMI, focusing into their own interaction chamber, installed just after REMI. This experimental chamber was complemented by a grat- their own interaction chamber, installed just after REMI. For that purpose, the colleagues from Heidelberg had installed a refocusing mirror behind REMI, focusing into their own interaction chamber, installed just after REMI. This experimental chamber was complemented by a grat- their own interaction chamber, installed just after REMI. For that purpose, the colleagues from Heidelberg had installed a refocusing mirror behind REMI, focusing into their own interaction chamber, installed just after REMI. This experimental chamber was complemented by a grat- their own interaction chamber, installed just after REMI. For that purpose, the colleagues from Heidelberg had installed a refocusing mirror behind REMI, focusing into their own interaction chamber, installed just after REMI. This experimental chamber was complemented by a grat- their own interaction chamber, installed just after REMI. For that purpose, the colleagues from Heidelberg had installed a refocusing mirror behind REMI, focusing into their own interaction chamber, installed just after REMI. This experimental chamber was complemented by a grat- their own interaction chamber, installed just after REMI. For that purpose, the colleagues from Heidelberg had installed a refocusing mirror behind REMI, focusing into their own interaction chamber, installed just after REMI. This experimental chamber was complemented by a grat- their own interaction chamber, installed just after REMI. For that purpose, the colleagues from Heidelberg had installed a refocusing mirror behind REMI, focusing into their own interaction chamber, installed just after REMI. This experimental chamber was complemented by a grat- their own interaction chamber, installed just after REMI. For that purpose, the colleagues from Heidelberg had installed a refocusing mirror behind REMI, focusing into their own interaction chamber, installed just after REMI. This experimental chamber was complemented by a grat- their own interaction chamber, installed just after REMI. For that purpose, the colleagues from Heidelberg had installed a refocusing mirror behind REMI, focusing into their own interaction chamber, installed just after REMI. This experimental chamber was complemented by a grat- their own interaction chamber, installed just after REMI. For that purpose, the colleagues from Heidelberg had installed a refocusing mirror behind REMI, focusing into their own interaction chamber, installed just after REMI. This experimental chamber was complemented by a grat- their own interaction chamber, installed just after REMI. For that purpose, the colleagues from Heidelberg had installed a refocusing mirror behind REMI, focusing into their own interaction chamber, installed just after REMI. This experimental chamber was complemented by a grat- their own interaction chamber, installed just after REMI. For that purpose, the colleagues from Heidelberg had installed a refocusing mirror behind REMI, focusing into their own interaction chamber, installed just after REMI. This experimental chamber was complemented by a grat- their own interaction chamber, installed just after REMI. For that purpose, the colleagues from Heidelberg had installed a refocusing mirror behind REMI, focusing into their own interaction chamber, installed just after REMI. This experimental chamber was complemented by a grat- their own interaction chamber, installed just after REMI. For that purpose, the colleagues from Heidelberg had installed a refocusing mirror behind REMI, focusing into their own interaction chamber, installed just after REMI. This experimental chamber was complemented by a grat-

FLASH2020+ aims at providing greatly improved experimental capabilities for all users. Therefore, it encompasses major changes and upgrades to almost all sections of the accelerator, new undulators, as well as a new photon beamline and diagnostics in the FLASH1 tunnel. Furthermore, substantial improvements and new capabilities will be realised in the experimental halls.

The upgrade project involves all scientific and infrastructure groups responsible for FLASH at DESY. Enrico Allaria took over the project lead in 2020 and brought it into full swing. As the new project leader, Lucas Schaper is now in charge of further advancing the project and coordinating the upcoming construction phases (Fig. 1) of FLASH2020+.

Phase 0 (shutdown November 2021 – August 2022): The exchange of two linear accelerator modules will boost the maximum achievable electron energy. A new injector laser system and an afterburner undulator at FLASH2 will be installed.

Phase 1 (shutdown planned for 2024): Major upgrades of FLASH1: new undulator chain with variable gap and polarisation, seeding at full repetition rate, new photon beamline and diagnostics in the FLASH1 tunnel for FEL operation and for users, complemented by an upgrade of the Thz–XUV pump–probe end station (as used throughout) as well as more flexible pump–probe lasers in both experimental halls.

The FLASH accelerator team, together with many groups specialised on technical subsystems and infrastructure, as well as the FLASH Photon Science groups are now working full steam to successfully realise major refurbishments and upgrades. The goal is to finish Phase 0 of the project in the first major shutdown of FLASH before the accelerator commissioning starts again.

Users will benefit most from an increased electron beam energy of the accelerator. It will allow FLASH to lase at about 20% shorter wavelengths than before. This will shift the wavelength limit to about 3.4 nm (365 eV) and thus enable measurements ‘deeper’ in the water window. In addition, FLASH2 will be equipped with a variable polari- sation third-harmonic afterburner undulator (Fig. 2). Optimised to provide photon energies around the L-edges of iron, chromium and nickel, the new undulator will allow, for example, for dichroism studies in the field of ultrafast magnetisation dynamics.

After cooling down the superconducting accelerator again in August 2022, the new installations will be commissioned. It is planned to restart operation for users in November 2022, allocating experiments from the last proposal round; the deadline was on 1 October 2021.

The next call for proposals will be issued in spring 2022 for beamtimes in the second half of 2023 before FLASH goes into the next shutdown — planned for the full year 2024 to realise Phase 1.

References
During the year 2021 the operation of PETRA III for users and the construction of beamlines were still affected by the worldwide pandemic. However, due to the experience gained in 2020 how to operate this facility under difficult pandemic conditions, an access mode of PETRA III could be realised which enables national and international users almost normal access to the beamlines and laboratories. In addition, most of the planned beamtimes, which have been postponed from 2020 to the future, could be carried out until August 2021. In the early months of 2021, conducting experiments was still strongly influenced by national and international pandemic regulations and travel restrictions which made it difficult to prepare samples in the users’ home institutions or to travel to DESY. Later in the year, almost regular operation for users was achieved before the pandemic. As usual, the experience of PETRA III in 2021, reflecting the VUV beam originating from the bending magnet to the experiment.

The shutdown period in January and February 2021 was used to install the front end for the PETRA III beamline P66 at a bending magnet (Fig. 2). For this, a modified quadrupole was inserted, as well as a synchrotron light extraction chamber and a vacuum flight tube running up to the P66 experimental hutch was installed. Subsequently, the mirror chamber was installed in the summer shutdown 2021, reflecting the VUV beam originating from the bending magnet to the experiment. With the finalisation of P62 and P66 in 2021, the only open beamline slots at PETRA III are P25 and P63. These beamlines are in the planning phase and will become operational in the next two to three years. The vacuum chambers for the undulators and the front-end hardware for P25 and P63 are already installed. Therefore, the PETRA III storage ring is now in its final configuration for operation with all possible PETRA III beamlines. A change of one cavity is foreseen for summer of 2022 but no further extensive work on the accelerator in the beamline sections is planned. In 2023 an upgrade of PIA, a part of the pre-accelerator installations of PETRA, is planned to ensure reliable operation of PETRA III for the coming years and to enable PETRA IV operations in the long term.

PETRA III — new beamlines in user operation
In 2021 two more beamlines became operational for regular users: beamline P62 ‘Small-Angle X-ray Scattering beamline for MATerials research’ (SAXSMAT) in the PETRA III experimental hall ‘Paul Peter Ewald’ and beamline P66 for ‘time-resolved luminescence spectroscopy’ (Superlumi) in a separate hutch in building 47K. Thus, the PETRA III Extension Project (PEX) has been successfully completed. The PEX project was initiated in 2012 to relocate the most relevant X-ray techniques of the DORIS III light source after its shutdown to PETRA III.

PETRA III — machine operation
In 2021 the availability of the PETRA III storage ring was 97.3% with a mean time between failures of 53 hours (as of 14 December 2021). The PETRA III machine was performing relatively well under the unusual circumstances, although slightly better results have been achieved in recent years. Roughly a quarter of the down time was caused by external power glitches from the Hamburg power net. A dedicated working group will discuss which measures can be taken to make the PETRA storage ring less sensitive to these glitches. As in previous years, two different electron bunch filling modes were offered for the PETRA III storage ring: a ‘timing mode’ with 40 bunches for time-resolved measurements and a ‘multi bunch’ mode with 480 bunches, both with approximately the same flux. This bunch-mode distribution has proven to be an optimal scenario to provide a maximum number of ‘timing mode’ shifts while minimising the radioactive activation of ring components as well as radiation damage of undulators.

Theshutdown period in January and February 2021 was used to install the front end for the PETRA III beamline P66 at a bending magnet (Fig. 2). For this, a modified quadrupole was inserted, as well as a synchrotron light extraction chamber and a vacuum flight tube running up to the P66 experimental hutch was installed. Subsequently, the mirror chamber was installed in the summer shutdown 2021, reflecting the VUV beam originating from the bending magnet to the experiment.

With the finalisation of P62 and P66 in 2021, the only open beamline slots at PETRA III are P25 and P63. These beamlines are in the planning phase and will become operational in the next two to three years. The vacuum chambers for the undulators and the front-end hardware for P25 and P63 are already installed. Therefore, the PETRA III storage ring is now in its final configuration for operation with all possible PETRA III beamlines. A change of one cavity is foreseen for summer of 2022 but no further extensive work on the accelerator in the beamline sections is planned. In 2023 an upgrade of PIA, a part of the pre-accelerator installations of PETRA, is planned to ensure reliable operation of PETRA III for the coming years and to enable PETRA IV operations in the long term.
P66 (Fig. 4) the luminescence of previously excited samples can be measured, e. g. of future scintillator materials. For the time-resolved analysis of the luminescence decay the timing mode is inevitable. Here, PETRA III is of advantage for the beamline with 90 ps pulse width and 192 ns separation of the light pulses.

The photon energies of the beamline range from 3.7 eV (UV) to 40 eV (VUV) which corresponds to a wavelength range of 31 nm to 335 nm. The resolving power of the primary monochromator lies between 6×10⁻⁴ and 9×10⁻⁴, depending on the photon energy. The experimental hut is located between the PETRA hall ‘Max von Laue’ and the FLASH2 hall ‘Kai Siegbahn’ on top of the PETRA III wall. At the experimental station, a helium flow cryostat is available to reach sample temperatures between 10 K and 380 K in a high-vacuum sample chamber.

PETRA III - design and construction of remaining beamlines

In 2021 two last remaining open beamlines are in the design phase and one end station is in the construction phase: the undulator beamline P25 and the undulator beamline P63, a cooperation project with Max Planck institutions as well as the end station HIKA at beamline P23, a cooperative activity with the Karlsruhe Institute of Technology (KIT). These beamlines are not part of the above mentioned PEX-project.

In the PETRA III experimental hall ‘Ada Yonath’, the biggest activity is the upgrade of the in situ diffraction beamline P23 with an end station for hierarchical imaging (HIKA). This joint project of KIT and DESY is funded by the Helmholtz Association of German Research Centres (HGF). This upgrade complements the existing imaging techniques available at PETRA III by hierarchical imaging methods for materials research in life sciences and semiconductor research. The project is advancing rapidly. In 2021, the new experimental hut was erected and the HIKA instruments delivered to DESY (Fig. 5). Due to the enormous weight and dimensions of HIKA, parts of the roof of the PETRA hall ‘Ada Yonath’ were temporarily removed to enable the delivery and installation. Three staff members of KIT are on-site at PETRA III to realise the project in cooperation with DESY. In 2022, the installations will be completed and both the preparation and the control huches will be built. The first beam in the hut is expected end of 2022 or beginning of 2023.

Beamline P25 is part of a joint project of the PETRA III and the DESY group of PETRA III and the DESY group for innovation technology transfer (ITT). It will be serving customers from industry and academy who need imaging or
lighting laboratories have been erected in sector 0 in the PETRA III close to being finalised (Fig. 6). In total, eight specialised laboratories in summer 2022.

PETRA III — upgrade of laboratories and general services

In 2021 the new PETRA III laboratory infrastructure is to start planning this beamline and to bring it into the PETRA IV project. It is planned to complete the design in early 2022 and start with the construction phase soon afterwards.

P63 is the last open beamline at PETRA III. In 2021 it was decided to start planning this beamline and to bring it into operation well in advance of the shutdown for the PETRA IV upgrade. Beamline P63 will be planned in very close cooperation with the Fritz Haber Institute in Berlin and the Max Planck Institute for Chemical Energy Conversion in Mulheim an der Ruhr. It will be dedicated to combined XAS/XRF/SAXS/powder diffraction applications for investigating their samples. Located in a hutch for monochromatic X-ray beams, both end stations will be designed for fully automated operation. In addition, an end station for white and pink beam applications will be constructed in a separate hutch. This hutch will also be used for testing and commissioning components needed for the PETRA IV project.

Further four specialised laboratories offer new general services at PETRA III. These services will comprise a laboratory for construction, maintenance and preparation of cryogenic sample environments, a lab for vacuum applications, a laser lab for off-line laser experiments and preparation and a lab for Auger-microscopy which is operated by the DESY NanoLab group.

PETRA III — The ultimate 3D X-ray microscope

Within the PETRA IV project, PETRA III is to be upgraded to a synchrotron radiation source with ultra-low emittance. This will turn PETRA IV into a giant 3D X-ray microscope for biological, chemical and physical processes. It covers all relevant length scales and will be able to uncover the structure and dynamics of complex matter in all fields of science. The technical design phase of the PETRA IV project reached the end of its second year in 2021. Three major tasks for the upgrade of PETRA III have been pursued: The detailed design of the new storage ring lattice, the definition and refinement of the future beamline portfolio and the planning of additional infrastructure for PETRA IV.

In early 2021, a new transformative storage-ring concept was developed and further refined over the year. It is based on a ‘hybrid 6-bend achromat’ (H6BA) lattice with damping undulators. It outperforms the previous designs, as described in the PETRA IV conceptual design report (CDR) published in 2019 and the combi-lattice proposed in 2020, in terms of electron-beam stability and lifetime and makes a more reliable and sustainable top-up injection possible. In addition, the new lattice enables improved operation modes for timing experiments.

The new lattice also allows us to preserve the sector layout in the existing experimental halls. This will guarantee a sustainable re-use of existing infrastructure and simplify the start of operation for users. Overall, this leads to a slight reduction of the brightness of each beamline compared to the previous design, while it preserves the current sector layout and creates space for additional beamline sectors. Figure 2 shows the brightness of undulators in normal (4.5 m) and long straight sections (10 m) in comparison to the current brightness at PETRA III. The brightness will be improved by two to three orders of magnitude at all PETRA IV beamlines and will enable an outstanding suite of experiments, many of which are not feasible at present. However, the lattice design change will require further detailed studies that will be incorporated into the PETRA IV technical design report (TDR) now planned for mid 2023. According to the new PETRA IV project plan, the shutdown of PETRA III is planned for the end of 2025, followed by a two year construction phase, leading to a start of operation in January 2028.

Based on the science case of PETRA IV and its outstanding applications, the PETRA IV planning process has been initiated and many important developments have been achieved. The implementation of a new storage ring lattice with improved performance and an updated beamline portfolio.

Figure 1

Artist’s view of the DESY campus with the PETRA IV storage ring (dashed line) and the planned experimental hall West (left). (Copyright: Science Communication Lab and DESY)

Contact (PETRA III): Oliver Seec, oliver.seec@desy.de
Hans-Christian Wille, hans.christian.wille@desy.de
Contact (PETRA IV): Kai Bagschik, kai.bagschik@desy.de
Stephan Klumpp, stephan.klumpp@desy.de
beam properties, the new beamline portfolio was developed together with the user community. Almost 160 ‘Scientific Instrumentation Proposals’ (SIPs) were submitted by the user community of PETRA in December 2020. In total, about 1200 authors contributed to ideas for new experimental instrumentations. The SIPs covered all fields of science, addressing in particular today’s most pressing societal challenges, including health and sustainable technologies. Researchers from international universities, all major German research institutions and industry contributed with their ideas. The submitted proposals were scientifically evaluated by external experts and used as basis for a draft beamline portfolio presented to the DESY Photon Science Committee (PSC) for review. Based on the PSC’s advice in terms of strategic and scientific criteria, the portfolio was refined to comprise 28 beamlines, leaving a strategic buffer of a few straight sections for future developments.

As for PETRA III, it is planned to operate these beamlines together with the partner institutions: European Molecular Biology Laboratory (EMBL), the Helmholtz-Zentrum Hereon, the Max Planck Society and with support from India and Sweden. The refined beamline portfolio was presented to the PETRA user community during a two-day online workshop which took place from 29–30 September 2021. Over 500 registrants from 33 countries attended the workshop, covering a wide range of techniques, science fields and experiments. Each individual PETRA IV beamline was presented and discussed with the user community from academia and industry. The refined PETRA IV beamline portfolio will be reviewed again by the PSC and additional external experts before approval by the DESY management. Starting 2022, the project will continue with the technical design of the beamlines until the finalisation of the technical design report.

To accommodate all of the 28 proposed beamlines and to expand the portfolio in the future, a new experimental hall is planned in the West of the storage ring. This new hall was designed further in 2021 and all scientific and technical requirements were collected. A first concept of the new building is expected to be submitted to the local authorities in Hamburg at the beginning of 2022 in order to get a building permit. The new hall will be largely underground and integrated in the public Ute-Meitner park adjacent to the DESY campus in the West. An additional office and laboratory building is planned in close vicinity of this hall to accommodate users, beamline staff as well as preparatory laboratories.

In August and September 2021 — after years of planning and construction — the DESY NanoLab has successfully been relocated to the ground floor of the new Centre of X-ray and Nano Science (CXS) building and expanded at the same time. Most instruments are back to working condition, and the NanoLab research already profits from the new and spacious laboratories with state-of-the-art additions to already existing high-end instrumentations.

The DESY NanoLab consists of several strong pillars in nanoscience research: microscopy, nano-structuring, spectroscopy, nanoparticle synthesis, in situ and operando X-ray diffraction, electrochemistry and magnetism. A laser lab is planned for the preparation of ultrafast pump-probe experiments in cooperation with Leibniz-Institut für Kristallzüchtung (IKZ) to complement the NanoLab science fields. The methods available are complementary to the photon-based techniques at the DESY X-ray facilities PETRA III and FLASH and at the European XFEL. For external users, access to the DESY NanoLab is granted via regular PETRA III or FLASH proposals and European access programmes such as NFFA Europe. Industrial users can access via DESY Innovation and Technology Transfer (ITT).

While most of the laboratories are situated in the CXNS, both X-ray and electrochemistry labs are in close vicinity. The creation of an X-ray lab with three independent hutch delivers more space for increased demand by internal and external users for structural X-ray characterisations. A second sixth-circle-diffractometer will be established in the X-ray laboratories as well. Expansion of the DESY NanoLab also includes a scanning Auger microscope in the PETRA III experimental hall ‘Max von Laue’ which was installed in November 2021. It provides surface-sensitive chemical analysis with less than 10 nm lateral resolution and complements the microscopy section of the NanoLab.

The NanoLab ultrahigh vacuum scanning probe microscope (Fig. 1) has received a helium cooling upgrade which allows sample temperatures of around 20 K to study a wider range of molecule adsorption on surfaces and nanostructures.

The existing UHV transfer system has been extended by three additional modules to provide further space for additional analysis systems (Fig. 2). This transfer system allows sample transfer under UHV conditions between different characterisation chambers as well as to the DESY X-ray facilities PETRA III and FLASH.

With these updates and extensions, the DESY NanoLab will continue to support projects from internal and external users in nano and materials science.

Author contact: Andreas Stierle, andreas.stierle@desy.de

References
The European Molecular Biology Laboratory Hamburg
Facilities for integrated structural biology at PETRA III

The Hamburg site of the European Molecular Biology Laboratory (EMBL) connects research and services to generate scientific excellence. We offer access to our integrated structural biology facility which includes, among others, preparation, crystallisation, biophysical and structural characterisation of biological samples and data analysis. We work together with other EMBL sites to provide support and increase automation throughout the experiment: from sample preparations to data deposition. Due to the Covid-19 pandemic, most EMBL services have been provided by remote operation (user-driven experiment control from a remote location) or mail-in services (experiment performed by on-site staff). In addition, intensive efforts have aimed at shaping up a future research infrastructure portfolio for PETRA IV. This year’s research highlights at EMBL Hamburg included work on the structure mycobacterial ESX-5 complex and analysis of pH-responsiveness inside lipid nanoparticles (see the highlight section of this report).

EMBL Hamburg offers access to its integrated facility within Instruct-ERIC.

The European Research Infrastructure Consortium (ERIC) Instruct makes high-end research infrastructures, technologies and methods in structural biology available to external researchers. Since 2019, EMBL has been an Instruct-ERIC member and in addition, the Instruct Centre EMBL was launched in 2021, providing services in integrated structural biology from its sites in Heidelberg, Grenoble and Hamburg.

Benefits of AlphaFold at EMBL Hamburg

AlphaFold2 is an artificial intelligence-based program that predicts protein structures with unprecedented accuracy. AlphaFold2 and the AlphaFold Protein Structure Database, released by DeepMind and EMBL, respectively, are a breakthrough for structural biology and will benefit research and services at EMBL Hamburg. AlphaFold2 supports macromolecular crystallography as it helps solve challenging structures, provide initial models for molecular replacement, interpret electron densities and design optimal constructs for purification and crystallography. Advanced applications, such as time-resolved X-ray crystallography and SAXS, will complement AlphaFold2 by providing information about structural dynamics.

Sample Preparation and Characterisation (SPC) Facility

The SPC Facility offers a pipeline from the lab bench to the EMBL beamlines, helping optimise and prepare samples for structural studies. The facility has become a member of the Molecular-Scale Biophysics Research Infrastructure (MOSBRI) consortium which allows supported access to molecular biophysics services across Europe.

The SPC team released eSPC, a freely available online platform (Fig. 1) which enables users to analyse molecular biophysics data from a range of experimental techniques without the need to travel to the lab where the data have been generated [1].

Beamline P12 for biological small-angle X-ray scattering (SAXS)

P12 is an undulator beamline optimised for low background data collection from macromolecular solutions and kinetic experiments with high temporal resolution. P12 provides fully automated and remote data acquisition and processing which has allowed to continue the provision of services in 2021.

Anomalous SAXS (ASAXS) provides element-specific information. ASAXS measurements of proteins are now possible at the beamline P12 thanks to new developments including the beamline control, data acquisition and reduction pipeline and new modelling tools [2,3].

In the frame of EMBL’s Environmental Research Initiative, the Svergun Group is using P12 to study dispersion of plastics in the environment ending up as micro and nano-sized debris. SAXS is employed to study the structure of nanoplastic particles in water to provide data in order to help remediation/elimination of nanoplastic pollution.

Scientists from several Hamburg research institutes led by the Svergun group collected the first SAXS curve of a protein using an X-ray free-electron laser (Fig. 2). The experiment, conducted at the European XFEL, used samples containing SARS-CoV-2 spike proteins complexed to specific antibodies. The results could improve understanding of the immune response in Covid-19.

Beamlines P13 and P14 for macromolecular crystallography

The second P14 end station for time-resolved X-ray crystallography (T-REXX) is dedicated to serial X-ray crystallography. The beamline graphical user interface MXcuBE and the automatic data processing and storage in our laboratory information management system ISPyB (recently renamed to EXI) were improved. The auto-processing results are now displayed as overview tables with downloadable diagrams and processed files. The resulting electron density is automatically available for inspection in a web browser minutes after data collection (Fig. 3). This fast feedback after a current measurement enables the adjustment of the subsequent data collection and allows remote users to follow the ongoing experiment almost in real time.

The Dectris CdTe 16M Eiger2 detector was installed at P14. Thanks to optimised beamline optics, an advanced Global Phasing Ltd’s data-collection workflow [4] and CdTe-based high-resolution Eiger2 detector, users can now collect precise and accurate data on large unit-cell systems at high energies [5]. The setup can support the most demanding applications of X-ray crystallography to structural biology and enzyme-mechanistic studies.

New team leader will establish biological X-ray imaging

EMBL Hamburg welcomes Liz Duke, a new team leader, who will establish biological X-ray imaging at P14. Hard X-ray biological imaging is an emerging technique that uses high energy X-rays to image tissues or even entire organisms. The technique will play a big role in EMBL Hamburg’s future portfolio, enabling scientists to study life on multiple scales.

Events and PETRA IV

EMBL Hamburg’s events took place virtually this year. These included the workshop ‘Strategy for future EMBL research infrastructures in the Life Sciences in Hamburg’ which aimed to receive feedback from the international community on EMBL’s plans for PETRA IV. EMBL forged closer ties with DESY by jointly organising a workshop on promoting industrial use of structural biology beamlines at PETRA III and PETRA IV as well as facilitating innovation. EMBL also presented its plans for future beamlines at the PETRA IV Beamline Portfolio Users’ Workshop.

To continue training and enable scientific exchange, EMBL has organised a SAXS course, a virtual P12 user meeting and the EMBO workshop ‘Recent Advances in Structural Biology of Membrane Proteins’.

Contact: Dorota Badowska, dorota.badowska@embl-hamburg.de

References

Figure 1

eSPC is a freely available online platform for analysis of molecular biophysics data (Credit: Silvia Burastero and Creative Team/EMBL).

Figure 2

Scattering pattern of bovine serum albumin during the SAXS experiment at the European XFEL. The pattern was formed by X-ray pulses (from the European XFEL) which scattered when they hit the sample. They were captured by a 16M CdTe detector consisting of multiple panels, visible as rectangular tiles in the image. The colours indicate the scattered intensity. Image based on data generated by research groups at European XFEL, EMBL Hamburg and others (Credit: Andrej Gruzinov/EMBL).

Figure 3

The information management system automatically provides the electron density of the collected dataset within a few minutes after data collection on T-REXX – the second end station at P14 (Credit: David von Stetten/EMBL).
Diffraction

The engineering materials station (Fig. 1) of the new white-beam beamline P61 at PETRA III started user operation in spring 2021 and is in high user demand. Many experiments focused on residual stress analysis in engineering materials and components. The white beam from the damping wigglers delivers excellent flux up to 200 keV, enabling diffraction experiments with several centimetre-thick steel samples. Experiments were also conducted to explore the microbeam radiotherapy technique. In summer, a heavy-load diffractometer was installed for the use with heavy samples or sample environments. A high-speed radiography station is currently developed within the framework of the Röntgen-Ångström Cluster project ‘Track-AM’.

At the High Energy Materials Science Beamline P07, a series of experiments with the in situ selective laser melting (SLM) chamber was carried out. Two groups from TU Berlin studied the SLM process and the solidification of intermetallic TiAl alloys (Fig. 2). With the current setup, the rapid solidification and the corresponding phase transformations in a Ti-48Al-2Nb-2Cr alloy (in at. %) could be observed using high-energy X-ray diffraction with a time resolution of 20 ms [1]. Another experiment taking place was the in situ observation of precipitation kinetics in the Ni-based superalloy CMSX-4 using high-energy small- and wide-angle scattering (SAXS/WAXS) [2]. The high heating and cooling rates connected with the laser process lead to phase transformations far off from equilibrium, making model predictions more difficult, requiring experimental data for evaluation. Moreover, a hall-of-fame article was published in Advanced Engineering Materials that reviewed the impact of synchrotron X-ray techniques on the development at our full-field instruments. At the P05 nanofocus end station, this has been available for many years and was recently used to study novel crosslinked super-crystalline nanocomposites made of organic functionalised nanoparticles [5]. The widely used stress rig at the P05 microtomography end station was improved and applied to the analysis of ten-

Imaging

Materials research often requires the ability to use specifically designed in situ sample environments such as ovens, stress rigs, corrosion cells or nanoindenters which all are regularly used at our imaging instruments. Recently, a new nanoindenter was installed at the nanotomography end station of P05, enabling the collection of tomographic data during in situ nanoindentation [4]. The availability of a nanoindenter for full-field imaging complements the nanoindenter at the scanning nanodiffraction station of P03 Nanofocus End station. This has been available for many years and was recently used to study novel crosslinked super-crystalline nanocomposites materials made of organic functionalised nanoparticles [5]. The widely used stress rig at the P05 microtomography end station was improved and applied to the analysis of ten-

References

DES Y Photon Science at the European XFEL

User consortia of the Helmholtz International Beamline (HIB)

Besides being responsible for the construction and the operation of the European XFEL linear accelerator, DESY plays an important role as user of the European XFEL. DESY is partner in several user consortia. The three largest of these are the Serial Femtosecond Crystallography (SFX) user consortium, the Helmholtz International Beamline for Extreme Fields (HIBEF) and the Heisenberg Resonant Inelastic X-ray Scattering (hRIXS) user consortium. Moreover, DESY scientists are developing lasers and detectors for usage at the European XFEL.

SFX

The international SFX consortium provides methodologies and instrumentation for serial femtosecond crystallography experiments at the ‘Single Particles, Clusters and Biomolecules and Serial Femtosecond Crystallography’ (SPB/SFX) instrument of the European XFEL. It is now well recognised in the structural biology community that intense femtosecond-duration pulses overcome prior limitations in structure determination due to radiation damage and offer a unique capability of imaging macromolecules at ambient pressures and temperatures, all possible with ultrafast time resolution. With this in mind, the European XFEL issued a call for rapid-access experiments relevant to Covid-19-related research. Members of the SFX user consortium nucleated two collaborative proposals that were each awarded beamtime in early 2021 to examine the dynamic behaviour of the SARS-CoV-2 proteases.

HIBEF

HIBEF contributes personnel and scientific input for experiments at the High Energy Density (HED) instrument of European XFEL.

After a successful community commissioning experiment in 2019 the high-pressure setup using diamond anvil cells (DAC) provided by DESY is an established experimental setup, see also the highlight section of this report. In 2021 measuring campaigns with megarhertz-time resolution in different fields of high pressure science were conducted. The high brilliance and the unique bunch train structure of the European XFEL were exploited for X-ray heating of low-Z materials using couplers, single shot pulsed laser heating and dynamic compression experiments utilising piezo-driven diamond anvil cells.

Both were successful experiments, collecting about 2 petabytes of data in total with the analysis ongoing at the time of writing. The SFX user consortium has also contributed critically to the ongoing success of the SPB/SFX instrument through both funding and expert collaboration. As of September 2021, the SPB/SFX instrument has produced about 20 peer-reviewed publications using EuXFEL beam, many in high-impact journals. Much of the instrumentation used routinely at SPB/SFX was contributed by the SFX user consortium.

For example, in 2021 the downstream station of the instrument enabled several experiments using an in-air extrusion jet of lipidic cubic phase in order to study the structure and dynamics of particular membrane proteins.

hRIXS

The Heisenberg RIXS consortium (hRIXS) has received the spectrometer (Fig. 2) and the ‘Chem’-chamber from Bectec GmbH (design HRIXS consortium). Together with European XFEL’s dedicated chamber for solids, this instrumentation is ready for studies of chemical dynamics and functional materials on the experimental floor of European XFEL. Commissioning shows exceedingly swift high-quality data acquisition. Here, joining the expertise of the HRIXS international consortium members with XFEL staff, was crucial. hRIXS with its high transmission and high-resolution gratings (400–1600 eV energy range) brings new impetus to determine governing principles, trace dynamic pathways and non-equilibrium properties for chemical and physical science, materials, energy conversion and even bio-relevant systems. In 2022 full science-driven user operation will start. Funding for hRIXS is provided by the Helmholtz Association via strategic investment in the HIB and other national funds (Italy, Germany). The project is partially supported by the ERC Advanced Grant ‘EDAX’ at Potsdam University. A high-end detector is funded by Finnish partners through a FIB grant. hRIXS includes partners from Germany, Switzerland, Finland, France, Sweden, Italy and the UK. The project is coordinated by Potsdam University in close collaboration with DESY and European XFEL.

Contact:

SFX: Henry Chapman, CFEL/DESY and Universität Hamburg, henry.chapman@desy.de
HIBEF: Thomas Cowan, HZDR, t.cowan@hzdr.de
hRIXS: Alexander Föhlisch, Potsdam University and HZB, alexander.foehlisch@helmholtz-berlin.de

References

Research centres and cooperations 104
Cooperation in research and education 106
Center for Free-Electron Laser Science CFEL 108
Centre for Structural Systems Biology CSSB 109
Centre for X-ray and Nano Science CXNS 110
Centre for Molecular Water Science CMWS 111
DESY Photon Science is part of a worldwide scientific network. The cooperation landscape at DESY Photon Science is diversified and involves local as well as national and international partners. Cooperation creates new scientific and technological opportunities at DESY’s facilities, increases the pool of talents and is also indispensable for further coordination of research roadmaps and agendas. The image below highlights key points of cooperation within the Science City Hamburg Bahrenfeld to which DESY Photon Science is connected. Some strategic highlights of the cooperation activities with universities, in networks and the interdisciplinary research platforms on campus are reported on within this chapter. German universities are also closely involved at PETRA III and FLASH, for example, via BMBF-funded collaborative research. Developments in connection to PETRA III, FLASH and European XFEL are described in the chapter ‘Light Sources and User Infrastructures’.
Cooperation in research and education

Universities and networks overview

Collaborative research structures

Joint appointments

Andrea Trabattoni has been jointly appointed junior professor with University Hannover. For his activity in time-resolved angle-resolved photon electron spectroscopy, he has successfully acquired funding from the Helmholtz Young Investigator programme. Tobias Herr, who also acquired funding within the Helmholtz young investigator programme working on ultrafast non-linear microphonics, was jointly appointed to a W2 professor position at UHH. Sadia Bari has been appointed associate professor equivalent to German 'W2' level at the University of Groningen to work in the field of soft X-ray research on the dynamic structure of isolated and solvated single biomolecules. This joint professorship with DESY is financed by Helmholtz funding for first-time professorial appointments. Patrick Huber — an expert on hierarchal material systems — has been jointly appointed to a W3 professorship with the TUHH.

Graduate Schools

In January 2021 the Helmholtz Lund International Graduate School HELIOS was officially launched and the first HELIOS students started their projects throughout the year.

In 2021 several collaborative research centres (SFBs), to which DESY Photon Science researchers are contributing, started into a new term: SFB 986 'Tailor-made multi-scale material systems' (TUHH), SFB 1073 'Atomic scale control of energy conversion' (GAU), SFB 1441 'Tracking the active site in heterogeneous catalysis for emission control' (KIT) and the newly funded SFB 306 'Quantum cooperativity of light and matter' (FAU). The UHH’s excellence cluster CUI: Advanced Imaging of Matter organised a hybrid annual meeting during which the cluster’s Mildred Dresselhaus Prizes were awarded. In 2021 the senior award went to Jie Shen, professor of applied and engineering physics and physics at Cornell University (USA), for her outstanding achievements in the field of experimental condensed matter physics. Prineha Narang, assistant professor of computational materials science at Harvard University (USA), was awarded the junior prize for her outstanding contributions to quantum science. The research building ‘Hamburg Advanced Research Centre for Bioorganic Chemistry (HARBOR)’ was opened in 2021 in the Bahrenfeld campus. CUI and various UHH groups are involved in HARBOR. HARBOR strengthens the links of the UHH and DESY in the context of time-resolved imaging for research on biomolecular physics. To promote science communication even during the Corona pandemic, UHH and DESY organised a digital version of ‘Science on Tap’ in 2021.

In 2021 the newly funded and user-driven consortium DAPHNE4FDI started its work. It is coordinated by DESY and brings together several universities, including CAU and GAU, as well as research institutions to advance the state of data management in the photon and neutron science communities.

Joint appointments

Graduate schools
Three institutions working successfully together

A new analytical technique is able to provide hitherto unattainable insights into the extremely rapid dynamics of bio-molecules [5]. The team of developers from DESY and the University of Wisconsin presented a clever combination of quantum physics and molecular biology. They used the technique to track the way in which the photoactive yellow protein (PYP) undergoes changes in its structure in less than a picosecond after being excited by light. The detailed calculation shows how a conical intersection forms in four-dimensional space and how the PYP drops through back to its initial state after being excited by light (Fig. 1). Now the scientists can describe this process in steps of a few tens of femtoseconds and thus advance the understanding of photoactive processes.

The LUX team at CFEL celebrated two milestones in the development of innovative plasma accelerators [2,3]. The scientists from the University of Hamburg and DESY used their accelerator to test a technique that allows the energy distribution of the electron beams to be produced to be kept particularly narrow. They also used artificial intelligence to allow the optimiser to optimise its own operation.

Plasma acceleration is an innovative technology that gives rise to a new generation of particle accelerators which are not only remarkably compact but also extremely versatile. This compactness is both a curse and a blessing: Since the compactness is not only remarkably compact but also extremely versatile.

The compactness is both a curse and a blessing: Since the compactness is not only remarkably compact but also extremely versatile. This compactness is both a curse and a blessing: Since the compactness is not only remarkably compact but also extremely versatile.

Two collaborative projects funded CSSB Director’s funds were awarded to an ambitious flag-ship project called PLASMOFRACTION which will use a bottom-up structural-systems biology approach to investi-gate membrane protein complexes in the transmissible gametocyte stages of the malaria parasite Plasmodium fals-ciparum. While gametocytes are of high medical relevance, little is known about their molecular structure and function. PLASMOFRACTION will investigate P. falciparum gameto-cyte biology from a fresh angle with innovative shotgun structural-biology approaches that use cryo-EM to identify and determine structures of protein complexes directly from the parasite’s cellular membranes.

CSSB’s collaborative project ‘Multiscale analysis of patho-gen invasion strategies into clinically-relevant host cells’ has been awarded funding from Hamburg’s state research fund-ing Hamburg-X supported project ‘Infection Research’. This ambitious project, involving eight CSSB groups and three facilities, aims not only to investigate pathogen inva-sion strategies but also to increase synergies at CSSB and to lay the groundwork for future cooperative initiatives.

Contact: Chris Meier, chris.meier@cssb-hamburg.de
Centre for X-ray and Nano Science

Getting off the ground and taking shape — CXNS building starts operations

In August and September 2021 all staff working at the Centre for X-ray and Nano Science was able to move to the new building on campus close to the PETRA III experimental hall ‘Max von Laue’ (Fig. 1). The offices were occupied quickly while lab moves have required more time. Nevertheless, almost all labs are either in working condition or close to it by the end of 2021.

The spacious laboratories on the ground floor are divided up between Hereon’s German Engineering Materials Science Centre (GEMS) and DESY Photon Science teams including the DESY NanoLab. The DESY NanoLab’s X-ray and electrochemistry laboratories are situated in buildings in close proximity to the CXNS. A laser lab is planned in a joint cooperation between the Leibniz-Institut für Kristallzüchtung (IKZ) and the DESY NanoLab on the CXNS ground floor close to it by the end of 2021.

These five strong research partners will be working together at the CXNS and will be using its excellent facilities either at the CXNS or in close vicinity at DESY’s large-scale X-ray facilities PETRA III and FLASH. In addition, the CXNS is hosting the DESY Photon Science User Office.

The official opening ceremony for the CXNS is scheduled for spring 2022. It is planned to establish a regular interdisciplinary exchange of all CXNS scientific partners and also create a symposium in the field of X-ray and nanoscience.

Contact: Andreas Stierle, andreas.stierle@desy.de

Centre for Molecular Water Science

Achieving a detailed molecular understanding of water

The Centre for Molecular Water Science (CMWS) brings together key experts from different areas of water-related sciences. The common goal of CMWS is delivering a detailed molecular understanding of the various structures, phenomena and dynamic processes in water and water interfaces that are relevant for green-energy technologies, health and environment. In a series of workshops and general meetings, the science concept has been developed by the CMWS consortium consisting of more than 140 scientists worldwide. The research of CMWS is organised in five pillars (Fig. 1) and coordinated by DESY. The key idea is a combined theoretical and multimodal experimental approach. Vital for this approach are the X-ray methods available at DESY and European XFEL for studying molecular structure and dynamics on different timescales and in various environments [1].

Driving water research forward

A milestone was reached in May 2021 with the publication of the research programme of CMWS, the White Paper [2], authored by more than 110 scientists.

Motivated by this research agenda, several new developments aim at advancing water research at DESY. Two new CMWS laboratories were set up, offering for example Raman and Fourier-transform infrared spectroscopy (FT-IR) and are about to be further expanded with specific instrumentation. Sadia Ban, the first professorial appointment within CMWS, together with the University of Groningen, focusses on probing the dynamical local structure of isolated solvated proteins.

To extend and further strengthen the common research activities within CMWS, an Early Science Programme (ESP) was launched by DESY in 2019 supporting PhD projects between different CMWS partners. The programme is jointly financed by DESY and CMWS partners with equal contributions. A second call was launched in 2020 and 10 new projects started in 2021. A third round of the science programme will start in 2022 with a focus on the research agenda of the CMWS White Paper. First cooperation agreements for external CMWS hubs are prepared with the KU Leuven (Belgium) in the field of nuclear magnetic resonance spectroscopy.

Scientific exchange

The CMWS DAYS took place in March 2021 as an all-online event with more than 275 participants. In this meeting highlights of CMWS research were presented and the final draft of the White Paper was discussed. The next CMWS DAYS are planned for March 2022. During the summer semester 2021 the CMWS seminar started as a lunch talk series on water-related science and technology. The aim of the series is to intensify the scientific exchange within the network of CMWS and to introduce students and young scientists to the different research areas of CMWS.

Contact: Claudia Goy, claudia.goy@desy.de

References

CMWS Partner Institutions

51 partner institutions from 16 countries have expressed their support by a letter of interest www.cmws-hamburg.de
Facts and Numbers

- FLASH – Experimental halls and parameters
- PETRA III – Experimental halls and parameters
- FLASH – beamlines
- PETRA III – beamlines
- Beamtime statistics 2021
- Committees 2021
- Project Review Panels 2021
FLASH

Experimental halls and parameters

FLASH – machine parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>FLASH1</th>
<th>FLASH2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electron energy range</td>
<td>0.35–1.25 GeV</td>
<td>0.4–1.25 GeV</td>
</tr>
<tr>
<td>Normalised emittance at 1 nC</td>
<td>1.4 mm mrad</td>
<td>1.4 mm mrad</td>
</tr>
<tr>
<td>Energy spread</td>
<td>200 keV</td>
<td>500 keV</td>
</tr>
<tr>
<td>Electron bunch charge</td>
<td>0.02–2.2 nC</td>
<td>0.02–1.2 nC</td>
</tr>
<tr>
<td>Peak current</td>
<td>1–2.5 kA</td>
<td>1–2.5 kA</td>
</tr>
<tr>
<td>Electron bunches per second</td>
<td>5000</td>
<td>5000</td>
</tr>
</tbody>
</table>

FLASH – lasing parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>FLASH1</th>
<th>FLASH2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Photon energy fundamental</td>
<td>24–295 eV</td>
<td>14–310 eV</td>
</tr>
<tr>
<td>Wavelength fundamental</td>
<td>51–4.2 nm</td>
<td>90–4 nm</td>
</tr>
<tr>
<td>Photon pulse duration (FWHM)</td>
<td>30–200 fs</td>
<td>1–200 fs (estimated)</td>
</tr>
<tr>
<td>Peak power</td>
<td>5–5 GW</td>
<td>1–5 GW</td>
</tr>
<tr>
<td>Single photon pulse energy (average)</td>
<td>1–500 µl</td>
<td>1–1000 µl</td>
</tr>
<tr>
<td>Spectral width (FWHM)</td>
<td>0.7–2%</td>
<td>0.5–2%</td>
</tr>
<tr>
<td>Photons per bunch</td>
<td>10^{11}–10^{14}</td>
<td>10^4–10^7</td>
</tr>
<tr>
<td>Peak brilliance photons/sec/mm²/mrad/0.1%</td>
<td>10^{11}–10^{14}</td>
<td></td>
</tr>
</tbody>
</table>

PETRA III

Experimental halls and parameters

PETRA III – machine parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electron energy</td>
<td>6.08 GeV</td>
</tr>
<tr>
<td>Circumference of the storage ring</td>
<td>2304 m</td>
</tr>
<tr>
<td>Number of bunches</td>
<td>40 (timing mode)</td>
</tr>
<tr>
<td></td>
<td>480 (multi bunch mode)</td>
</tr>
<tr>
<td>Bunch separation</td>
<td>192 ns (timing mode)</td>
</tr>
<tr>
<td></td>
<td>16 ns (multi bunch mode)</td>
</tr>
<tr>
<td>Electron beam current</td>
<td>100 mA (timing mode)</td>
</tr>
<tr>
<td></td>
<td>120 mA (multi bunch mode)</td>
</tr>
<tr>
<td>Horizontal electron beam emittance</td>
<td>1.3 mmrad</td>
</tr>
<tr>
<td>Vertical electron beam emittance</td>
<td>0.01 mmrad</td>
</tr>
<tr>
<td>Electron beam energy spread (rms)</td>
<td>0.1%</td>
</tr>
<tr>
<td>Horizontal × vertical beam size (rms) at 5 m undulator (high β section) and 10 keV photon energy</td>
<td>141 µm × 5.2 µm</td>
</tr>
<tr>
<td>Horizontal × vertical beam size (rms) at 5 m undulator (low β section) and 10 keV photon energy</td>
<td>36 µm × 5.7 µm</td>
</tr>
</tbody>
</table>
FLASH experimental hall 'Albert Einstein'

BL1 non-monochromatic FEL photons

- Kirkpatrick-Baez (KB) focusing optics
- FEL focal spot df = 7 μm × 8 μm (FWHM)
- split-and-delay unit for XUV-pump–XUV-probe experiments
- mirrors for 13.57 nm, ~10 ps to ~650 ps delay

- Optional pump-probe experiments using the FLASH1 optical laser system for BL1 and BL3
 - 4-mirror polarizer for variable FEL polarization from 30–70 eV

- Permanent end station:
 - multipurpose CAMP chamber with pCCD detectors, electron and ion spectrometers and collinear incoherent optics for optical laser

BL3 non-monochromatic FEL photons, spectral range: 4.5 nm (carbon coated optics)

- focused to 20 μm (unfocused beam size = 5–10 mm (FWHM, depending on wavelength)

- Optional pump-probe experiments using the FLASH1 optical laser system for BL1 and BL3
 - 4-mirror polarizer for variable FEL polarization from 30–70 eV

- About 3 × 4 m platform for user-provided end station

FLASH1 optical / NIR laser system for pump-probe experiments for beamlines BL1 and BL3

- Central wavelength: 810 nm
- Spectral bandwidth: 25 nm
- Intra-burst repetition rate: single pulse
- Number of pulses per burst: 1
- Pulse duration: < 60 fs (FWHM, < 200 ps FWHM (uncompressed])
- Timing jitter to FEL: < 60 fs (rms)
- Pulse energy: 0–10 μJ (before coupling to chamber), 0–7 μJ (at interaction region)
- Polarization: flexible
- Peak intensity: < 10^14 W/cm^2
- Time delay to FEL: 4 ns to 4 ms, 10 fs resolution, larger delays optional
- Energy stability: < 10% pulse-to-pulse peak (3% rms)

FLASH2 experimental hall 'Kai Siegbahn'

FL24 non-monochromatic FEL photons

- Wavelength range: 4–90 nm fundamental
- Kirkpatrick-Baez (KB) focusing optics with variable focus down to < 10 μm (FWHM, unfocused beam size = 5–10 mm (FWHM, depending on wavelength)

- Optional pump-probe experiments using FLASH2 optical laser system
 - Grating incidence split-and-delay unit with ±12 ps time delay

- About 3 × 4 m platform for user-provided end station

FL26 non-monochromatic FEL photons

- Wavelength range: 6–90 nm fundamental

- Optional pump-probe experiments using FLASH2 optical laser system

- Permanent end station:
 - XUV-raman spectrometer XTRXS for high-resolution and time-resolved XTRXS measurements on solid samples
 - optional pump-probe experiments XTRXS, XUV + reflectivity with angular resolution using the FLASH1 optical laser system for PG1 and PG2

FLASH2 optical / NIR laser system for pump–probe experiments for beamlines FL24 and FL26

- Central wavelength: 700–900 nm (fast tuneable)
- Spectral bandwidth: 100 kHz
- Number of pulses per burst: 1–40
- Pulse duration: 35–35 fs FWHM (compressed to 1.1 × bandwidth limit), < 500 fs FWHM (uncompressed)
- Timing jitter to FEL: < 60 fs (rms)
- Pulse energy: 0–250 μJ (before coupling to chamber), 0–150 μJ (at interaction region)
- Polarization: flexible
- Focus size (4/6° diameter): FL24: < 100 μm, FL26: < 50 μm
- Peak intensity: < 10^13 W/cm^2
- Time delay to FEL: 4 ns to 4 ms, 10 fs resolution, larger delays optional
- Energy stability: < 10% pulse-to-pulse peak (3% rms)

Acknowledgement

We would like to acknowledge all contributions to the development and operation of FLASH and PETRA III beamlines and instruments provided within the framework of BMBF-Verbundforschung, and as part of collaborations with the Department of Science and Technology (Government of India) ‘India@DESY’, the Kamerlingh Onnes Laboratory (KVI University), the Max Planck Society and the Forschungszentrum Jülich.
PETRA III experimental hall ‘Max von Laue’

<table>
<thead>
<tr>
<th>Beamline and Instruments</th>
<th>Beamline and Instruments</th>
<th>Operated by</th>
</tr>
</thead>
<tbody>
<tr>
<td>PETRA III experimental hall ‘Max von Laue’</td>
<td>PETRA III experimental hall ‘Max von Laue’</td>
<td>PETRA III experimental hall ‘Max von Laue’</td>
</tr>
<tr>
<td>Beamline and Instruments</td>
<td>Beamline and Instruments</td>
<td>Beamline and Instruments</td>
</tr>
<tr>
<td>PETRA III experimental hall ‘Max von Laue’</td>
<td>PETRA III experimental hall ‘Max von Laue’</td>
<td>PETRA III experimental hall ‘Max von Laue’</td>
</tr>
<tr>
<td>Beamline and Instruments</td>
<td>Beamline and Instruments</td>
<td>Beamline and Instruments</td>
</tr>
<tr>
<td>PETRA III experimental hall ‘Max von Laue’</td>
<td>PETRA III experimental hall ‘Max von Laue’</td>
<td>PETRA III experimental hall ‘Max von Laue’</td>
</tr>
<tr>
<td>Beamline and Instruments</td>
<td>Beamline and Instruments</td>
<td>Beamline and Instruments</td>
</tr>
<tr>
<td>PETRA III experimental hall ‘Max von Laue’</td>
<td>PETRA III experimental hall ‘Max von Laue’</td>
<td>PETRA III experimental hall ‘Max von Laue’</td>
</tr>
<tr>
<td>Beamline and Instruments</td>
<td>Beamline and Instruments</td>
<td>Beamline and Instruments</td>
</tr>
<tr>
<td>PETRA III experimental hall ‘Max von Laue’</td>
<td>PETRA III experimental hall ‘Max von Laue’</td>
<td>PETRA III experimental hall ‘Max von Laue’</td>
</tr>
<tr>
<td>Beamline and Instruments</td>
<td>Beamline and Instruments</td>
<td>Beamline and Instruments</td>
</tr>
<tr>
<td>PETRA III experimental hall ‘Max von Laue’</td>
<td>PETRA III experimental hall ‘Max von Laue’</td>
<td>PETRA III experimental hall ‘Max von Laue’</td>
</tr>
<tr>
<td>Beamline and Instruments</td>
<td>Beamline and Instruments</td>
<td>Beamline and Instruments</td>
</tr>
<tr>
<td>PETRA III experimental hall ‘Max von Laue’</td>
<td>PETRA III experimental hall ‘Max von Laue’</td>
<td>PETRA III experimental hall ‘Max von Laue’</td>
</tr>
<tr>
<td>Beamline and Instruments</td>
<td>Beamline and Instruments</td>
<td>Beamline and Instruments</td>
</tr>
<tr>
<td>PETRA III experimental hall ‘Max von Laue’</td>
<td>PETRA III experimental hall ‘Max von Laue’</td>
<td>PETRA III experimental hall ‘Max von Laue’</td>
</tr>
<tr>
<td>Beamline and Instruments</td>
<td>Beamline and Instruments</td>
<td>Beamline and Instruments</td>
</tr>
<tr>
<td>PETRA III experimental hall ‘Max von Laue’</td>
<td>PETRA III experimental hall ‘Max von Laue’</td>
<td>PETRA III experimental hall ‘Max von Laue’</td>
</tr>
<tr>
<td>Beamline and Instruments</td>
<td>Beamline and Instruments</td>
<td>Beamline and Instruments</td>
</tr>
<tr>
<td>PETRA III experimental hall ‘Max von Laue’</td>
<td>PETRA III experimental hall ‘Max von Laue’</td>
<td>PETRA III experimental hall ‘Max von Laue’</td>
</tr>
<tr>
<td>Beamline and Instruments</td>
<td>Beamline and Instruments</td>
<td>Beamline and Instruments</td>
</tr>
<tr>
<td>PETRA III experimental hall ‘Max von Laue’</td>
<td>PETRA III experimental hall ‘Max von Laue’</td>
<td>PETRA III experimental hall ‘Max von Laue’</td>
</tr>
<tr>
<td>Beamline and Instruments</td>
<td>Beamline and Instruments</td>
<td>Beamline and Instruments</td>
</tr>
<tr>
<td>PETRA III experimental hall ‘Max von Laue’</td>
<td>PETRA III experimental hall ‘Max von Laue’</td>
<td>PETRA III experimental hall ‘Max von Laue’</td>
</tr>
<tr>
<td>Beamline and Instruments</td>
<td>Beamline and Instruments</td>
<td>Beamline and Instruments</td>
</tr>
<tr>
<td>PETRA III experimental hall ‘Max von Laue’</td>
<td>PETRA III experimental hall ‘Max von Laue’</td>
<td>PETRA III experimental hall ‘Max von Laue’</td>
</tr>
<tr>
<td>Beamline and Instruments</td>
<td>Beamline and Instruments</td>
<td>Beamline and Instruments</td>
</tr>
<tr>
<td>PETRA III experimental hall ‘Max von Laue’</td>
<td>PETRA III experimental hall ‘Max von Laue’</td>
<td>PETRA III experimental hall ‘Max von Laue’</td>
</tr>
<tr>
<td>Beamline and Instruments</td>
<td>Beamline and Instruments</td>
<td>Beamline and Instruments</td>
</tr>
<tr>
<td>PETRA III experimental hall ‘Max von Laue’</td>
<td>PETRA III experimental hall ‘Max von Laue’</td>
<td>PETRA III experimental hall ‘Max von Laue’</td>
</tr>
<tr>
<td>Beamline and Instruments</td>
<td>Beamline and Instruments</td>
<td>Beamline and Instruments</td>
</tr>
<tr>
<td>PETRA III experimental hall ‘Max von Laue’</td>
<td>PETRA III experimental hall ‘Max von Laue’</td>
<td>PETRA III experimental hall ‘Max von Laue’</td>
</tr>
<tr>
<td>Beamline and Instruments</td>
<td>Beamline and Instruments</td>
<td>Beamline and Instruments</td>
</tr>
<tr>
<td>PETRA III experimental hall ‘Max von Laue’</td>
<td>PETRA III experimental hall ‘Max von Laue’</td>
<td>PETRA III experimental hall ‘Max von Laue’</td>
</tr>
<tr>
<td>Beamline and Instruments</td>
<td>Beamline and Instruments</td>
<td>Beamline and Instruments</td>
</tr>
<tr>
<td>PETRA III experimental hall ‘Max von Laue’</td>
<td>PETRA III experimental hall ‘Max von Laue’</td>
<td>PETRA III experimental hall ‘Max von Laue’</td>
</tr>
<tr>
<td>Beamline and Instruments</td>
<td>Beamline and Instruments</td>
<td>Beamline and Instruments</td>
</tr>
<tr>
<td>PETRA III experimental hall ‘Max von Laue’</td>
<td>PETRA III experimental hall ‘Max von Laue’</td>
<td>PETRA III experimental hall ‘Max von Laue’</td>
</tr>
<tr>
<td>Beamline and Instruments</td>
<td>Beamline and Instruments</td>
<td>Beamline and Instruments</td>
</tr>
<tr>
<td>PETRA III experimental hall ‘Max von Laue’</td>
<td>PETRA III experimental hall ‘Max von Laue’</td>
<td>PETRA III experimental hall ‘Max von Laue’</td>
</tr>
<tr>
<td>Beamline and Instruments</td>
<td>Beamline and Instruments</td>
<td>Beamline and Instruments</td>
</tr>
<tr>
<td>PETRA III experimental hall ‘Max von Laue’</td>
<td>PETRA III experimental hall ‘Max von Laue’</td>
<td>PETRA III experimental hall ‘Max von Laue’</td>
</tr>
<tr>
<td>Beamline and Instruments</td>
<td>Beamline and Instruments</td>
<td>Beamline and Instruments</td>
</tr>
<tr>
<td>PETRA III experimental hall ‘Max von Laue’</td>
<td>PETRA III experimental hall ‘Max von Laue’</td>
<td>PETRA III experimental hall ‘Max von Laue’</td>
</tr>
<tr>
<td>Beamline and Instruments</td>
<td>Beamline and Instruments</td>
<td>Beamline and Instruments</td>
</tr>
<tr>
<td>PETRA III experimental hall ‘Max von Laue’</td>
<td>PETRA III experimental hall ‘Max von Laue’</td>
<td>PETRA III experimental hall ‘Max von Laue’</td>
</tr>
<tr>
<td>Beamline and Instruments</td>
<td>Beamline and Instruments</td>
<td>Beamline and Instruments</td>
</tr>
<tr>
<td>PETRA III experimental hall ‘Max von Laue’</td>
<td>PETRA III experimental hall ‘Max von Laue’</td>
<td>PETRA III experimental hall ‘Max von Laue’</td>
</tr>
<tr>
<td>Beamline and Instruments</td>
<td>Beamline and Instruments</td>
<td>Beamline and Instruments</td>
</tr>
<tr>
<td>PETRA III experimental hall ‘Max von Laue’</td>
<td>PETRA III experimental hall ‘Max von Laue’</td>
<td>PETRA III experimental hall ‘Max von Laue’</td>
</tr>
<tr>
<td>Beamline and Instruments</td>
<td>Beamline and Instruments</td>
<td>Beamline and Instruments</td>
</tr>
<tr>
<td>PETRA III experimental hall ‘Max von Laue’</td>
<td>PETRA III experimental hall ‘Max von Laue’</td>
<td>PETRA III experimental hall ‘Max von Laue’</td>
</tr>
<tr>
<td>Beamline and Instruments</td>
<td>Beamline and Instruments</td>
<td>Beamline and Instruments</td>
</tr>
<tr>
<td>PETRA III experimental hall ‘Max von Laue’</td>
<td>PETRA III experimental hall ‘Max von Laue’</td>
<td>PETRA III experimental hall ‘Max von Laue’</td>
</tr>
<tr>
<td>Beamline and Instruments</td>
<td>Beamline and Instruments</td>
<td>Beamline and Instruments</td>
</tr>
<tr>
<td>PETRA III experimental hall ‘Max von Laue’</td>
<td>PETRA III experimental hall ‘Max von Laue’</td>
<td>PETRA III experimental hall ‘Max von Laue’</td>
</tr>
<tr>
<td>Beamline and Instruments</td>
<td>Beamline and Instruments</td>
<td>Beamline and Instruments</td>
</tr>
<tr>
<td>PETRA III experimental hall ‘Max von Laue’</td>
<td>PETRA III experimental hall ‘Max von Laue’</td>
<td>PETRA III experimental hall ‘Max von Laue’</td>
</tr>
<tr>
<td>Beamline and Instruments</td>
<td>Beamline and Instruments</td>
<td>Beamline and Instruments</td>
</tr>
<tr>
<td>PETRA III experimental hall ‘Max von Laue’</td>
<td>PETRA III experimental hall ‘Max von Laue’</td>
<td>PETRA III experimental hall ‘Max von Laue’</td>
</tr>
<tr>
<td>Beamline and Instruments</td>
<td>Beamline and Instruments</td>
<td>Beamline and Instruments</td>
</tr>
<tr>
<td>PETRA III experimental hall ‘Max von Laue’</td>
<td>PETRA III experimental hall ‘Max von Laue’</td>
<td>PETRA III experimental hall ‘Max von Laue’</td>
</tr>
</tbody>
</table>
Beamtime statistics 2021

Photon Science Committee PSC — advises the DESY Photon Science management

- **Christian David** (chair), Paul Scherrer Institut, Villigen, CH
- **Stefan Eisebitt** (vice chair), MPI and Technische Universität Berlin, DE
- **Serhiy Delbée**, MPI-CEC, Mulheim an der Ruhr, DE
- **Kristina Djinov-Carugo**, Universität Wien, AT
- **Jan-Oliver Grunwaldt**, Karlsruher Institut für Technologie, Karlsruhe, DE
- **Mark Heron**, Diamond Light Source Ltd, Didcot, UK
- **Simo Huotari**, University of Helsinki, FI
- **Sarah Köster**, Georg-August-Universität Göttingen, DE
- **Jan Lüning**, Helmholtz-Zentrum Berlin, DE
- **Edwin Lundgren**, Lund University, SE
- **Thomas Pfeifer**, MPI for Nuclear Physics, Heidelberg, DE
- **Daniele Rupp**, Eidgenössische Technische Hochschule Zürich, CH
- **Bernd Schmitt**, Paul Scherrer Institut, Villigen, CH
- **Andrea Somogyi**, Synchrotron SOLEIL, Saint-Aubin, FR
- **Stefan Vogt**, Argonne National Laboratory, Lemont, US
- **Nele Müller** (PSC secretary), DESY, Hamburg, DE

Komitee Forschung mit Synchrotronstrahlung KFS — representative body of the German SR and FEL user community

- **Jan-Oliver Grunwaldt** (chair), Karlsruher Institut für Technologie, Karlsruhe, DE
- **Sarah Köster** (vice chair), Georg-August-Universität Göttingen, DE
- **Tiassia Gorkhover**, Universität Hamburg, DE
- **Christian Gutt**, Universität Siegen, DE
- **Birgit Kannegieter**, Technische Universität Berlin, DE
- **Dirk Lutzkenkirchen-Hecht**, Bergische Universität Wuppertal, DE
- **Andrea Thorn**, Christian-Albrechts-Universität zu Kiel, DE
- **Wele Müller** (KFS secretary), DESY, Hamburg, DE

DESY Photon Science User Committee DPS-UC — represents the user community

- **Peter Müller-Buschbaum** (chair), Technische Universität München, DE
- **Natalia Dobrovinskaya**, Universität Bayreuth, DE
- **Markus Mezger**, MPI für Polymerforschung, Mainz, DE
- **Daniela Rupp**, Eidgenössische Technische Hochschule Zürich, CH
- **Gregor Witte**, Ludwig-Maximilians-Universität München, DE

The European Synchrotron and FEL User Organisation ESUO (Executive Board)

- **Cormac McGuinness** (ESUO President), Trinity College Dublin, Dublin
- **Carla Bittencourt**, Université de Mons, BE
- **Federico Boscherini**, Università di Bologna, IT
- **Tom Hase**, University of Warwick, UK
- **Rainer Lechner**, Montanuniversität Leoben, AT
- **Derek Logan**, Lund University, SE
- **Bridget Murphy**, Christian-Albrechts-Universität zu Kiel, DE
- **Moniek Tromp**, Rijksuniversiteit Groningen, NL

For national delegates please see: http://www.wayforlight.eu/en/users/esuo/

For national delegates please see: http://www.wayforlight.eu/en/users/esuo/
Project Review Panels 2021

Bulk and surface diffraction
- **P08 | P23 | P24**
 - Derek (Del) Atkinson
 - Michael Hanke
 - Christian A. Helm
 - Beate Kloeckens
 - Fouad Maroun
 - Reinhard Nieder
 - Beatriz Noheda
 - Oliver Oezkiler
 - Maxim A. Shcherbina
 - Sander van Smaalen
 - Hans-Georg Steinruess
 - Chandan Upadhyay
 - Matthias Zocher
 - Florian Bertram, Dimitri Novikov,
 - Martin Tolkiehn (PRP secretaries)

Extreme conditions
- **University of Durham, GB**
 - Paul-Drude-Institut für Festkörperphysik, Berlin, DE
 - Universitat Greifswald, DE
 - Sydansk Universitet Odense, DK
 - Eole Polytechnique Palaiseau, FR
 - Friedrich-Alexander-Universität Erlangen-Nürnberg, DE
 - Universität Groningen, NL
 - Universität Leipzig, DE
 - Enkolopov Institute of Synthetic Polymer Materials, RAS Moscow, RU
 - Indian Institute of Technology, Varanasi, IND
 - Technische Universität, Bergakademie Freiberg, DE
 - DESY, Hamburg, DE

High energy diffraction
- **P07 | P07 (DESY) | P21.1 | P21.2**
 - Frauke Alves
 - Emil Bozin
 - Olaf Born
 - Per-Anders Carlsson
 - Magdalena Colladon
 - Margit Fabian
 - Jens Gilmire
 - Jürgen Herber
 - Markus Hucker
 - Kirsten Marie Jensen
 - Simon Kimber
 - Herbert Over
 - Tobias Ritschel
 - Joachim Wollschläger
 - Ann-Christin Dippel,
 - Martin von Zimmermann,
 - Ulrich Lienert (PRP secretaries)

Imaging
- **P05 | P06**
 - Matthias Alfeld
 - Martin Bech
 - Ulike Boesenberg
 - Oliver Bunk
 - Asuncion Carmona
 - David Fenning
 - Frank Friedrich
 - Sebastian Kalbfleisch
 - Florian Meier
 - Bert Mueller
 - Guerino Requena
 - Jurgen Thieme
 - Katarina Vogel-Mikus
 - Ulrich Vogt
 - Benjamin Wipfler
 - Fabian Wilde, Gerald Falkenberg (PRP secretaries)

Inelastic, magnetic and resonant scattering
- **P01 | P09**
 - Manuel Angst
 - Elizabeth Blackburn
 - Kristina Kvasshina
 - Catherine Cammenon
 - Daniel Merkel
 - Marco Moretti
 - Valerio Scagnoli
 - Marco Neriottii
 - Ioannis Markou
 - Ilya Sergeev, Sonia Francoual (PRP secretaries)

Materials science (Hereon)
- **P07 (Hereon) | P07 (DESY) | P15 (Hereon)**
 - Jeremy Epp
 - Guillaume Geandier
 - Astrid Hailbel
 - Patrick Huber
 - Christian Kempsazsky
 - Ingo Manke
 - Svea Mayer
 - Thomas Niendorf
 - Wolfgang Pantleon
 - Georg Schütz
 - Dieter Lott (PRP secretary)

Research Centre INSERM, Grenoble, FR
- Sylvain Bohic
- Dieter Lott (PRP secretary)
- Georg Schulz
- Thomas Niendorf
- Svea Mayer
- Christian Krempaszky
- Astrid Haibel
- Guillaume Geandier
- Ilya Sergeev, Sonia Francoual (PRP secretaries)
- Joachim von Zanthier
- Volker Schünemann
- Valerio Scagnoli
- Marco Moretti
- Daniel Merkel
- Kristina Kvashnina
- Elizabeth Blackburn
- Manuel Angst
- Elizabeth Blackburn
- Kristina Kvasshina
- Catherine Cammenon
- Daniel Merkel
- Marco Moretti
- Valerio Scagnoli
- Marco Neriottii
- Ioannis Markou
- Ilya Sergeev, Sonia Francoual (PRP secretaries)
- Jeremy Epp
- Guillaume Geandier
- Astrid Hailbel
- Patrick Huber
- Christian Kempsazsky
- Ingo Manke
- Svea Mayer
- Thomas Niendorf
- Wolfgang Pantleon
- Georg Schütz
- Dieter Lott (PRP secretary)
Project Review Panels 2021

Powder diffraction

Dorget Borrholdt Ravnsbæk
Robert Dinnebier
Mads Rø Jensen
Gregor Kieslich
Simon Paul
Martin Sahlberg
Anatoliy Senyshyn
Florian Speckermann
Claudia Weidenthaler
Mirjam Zobel
Martin Etter (PRP secretary)

Syddansk Universitet, Odense, DK
MPI fur Festeckpærforforskung, Stuttgart, DE
Aarhus University, DK
Technische Universität München, Garching, DE
Leibniz-IPF, Dresden, DE
Uppsala Universitet, SE
Technische Universität München, Garching, DE
Montanuniversität, Leoben, AT
MPI fuer Kohlenforschung, Mulheim a d. Ruhr, DE

DORH (Workshop)

Alexander Gerlach
Thomas Hellweg
Marianne Liebi
Frederik Lundell
Giuseppe Portale
Konrad Schneider
Qi Zhong
Stephan Roth, Sylvio Haas (PRP secretaries)

Universität Tübingen, DE
Universität Bielefeld, DE
Chalmers Tekniska Hogskola, Gothenborg, SE
Royal Institute of Technology, Stockholm, SE
Universiteit Groningen, NL
Leibniz-Institut für Polymerforschung Dresden e V., DE
Zhejiang Sci-Tech University, Hangzhou, CN

Soft X-ray and VUV

Yves Acremann
Paola Biolognosi
Arno Ehrensman
Mark Golden
Aleksandr Lustik
Jan-Erik Rubensson
Emma Solli
Anna Vedda
Moritz Hoesch, Aleksei Kotlov (PRP secretaries)

ETH Zürich, CH
CNR-ISM, Istituto di Struttura della Materia, Roma, IT
Universität Kassel, DE
Universiteit van Amsterdam, NL
University of Tartu, EE
Uppsala Universitet, SE
University College, Dublin, IE
Università di Milano-Bicocca, Milano, IT

Soft X-ray FEL experiments

Christoph Bostedt
Majed Chengui
Hermann Dürr
Irene Groot
Marion Harmand
Chris Jacobsen
Claudio Masciovecchio
Michael Meyer
Robert Schoenlein
Christian Schussler-Langeheine
Marc Simon
Julia Stahl
Marc Vrakking
Martin Wernert
Elke Plojes-Palm, Rolf Treusch (PRP secretaries)

PSI, Villigen, CH
École Polytechnique Fédérale de Lausanne, CH
Uppsala Universitet, SE
Universiteit Leiden, NL
Sorbonne Université, Paris, FR
Argonne National Laboratory, Argonne, US
Sinrotron Tréte, IT
European XFEL, Schenefeld, DE
SLAC National Accelerator Laboratory, Menlo Park, US
Helmholtz-Zentrum Berlin, DE
Sorbonne Université, Paris, FR
Humboldt-Universität zu Berlin, DE
Max-Born-Institut Leibniz Gesellschaft, Berlin, DE
Freie Universität Berlin, DE
Uppsala Universitet, SE

PEC: EMBL Life Science beamlines P12-P14 / PRP Bio-crystallography at PSI

Savvas Savvides
Pau Bernadó
Kristina Djovic-Carugo
Gwyndaf Evans
Robert Fischetti
Michal Jaskolski
Gergely Katona
Annete Langkilde
Teresa Santos-Silva
Zehra Sayers
Joel L. Sussman
Maria A. Vanoni
Mark J. van Raaij
Gregor Witte
Christian Schroer (DESY observer)

Ghent University, BE
CBS/CNRS, Montpellier, FR
Universität Wien, AT
Diamond Light Source, Didcot, GB
Argonne National Laboratory, US
Adam Mickiewicz University of Poznan, PL
University of Gothenburg, DE
University of Copenhagen, DK
Synchrotron SOLEIL, Saint-Aubin, FR
Universidade NOVA de Lisboa, PT
Sabanci University, Istanbul, TR
Weizmann Institute of Sciences, Rehovot, IL
Università degli Studi di Milano, IT
Centro Nacional de Biotecnologia, Madrid, ES
Ludwig-Maximilians-Universität München, DE

DESY, Hamburg, DE
Acknowledgement

We would like to thank all the authors and all those who have contributed to the realisation of this Annual Report.

Photographs and Graphics:

Gesine Born, Berlin
Niels Breckwoldt, CFEL
Silvia Burastero and Creative Team/EMBL
CFEL
Christian-Albrechts-Univ. zu Kiel
CMWS
CSSB
DESY
EMBL
European XFEL

Robert Gleissner, DESY
Andrey Gruzinov, EMBL
Helmholtz-Zentrum Heron
Jan Hosan, EuXFEL
LEAPS
Britta Liebaug, DESY
Marta Mayer, DESY
MPG
Jörg Modrow, DESY
Kerstin Pukall, Norderstedt

Carolin Rankin, Hamburg
Christiana Ritter, EMBL
Isabel Romero Calvo, EMBL
Reimo Schaaf, Hamburg
Schleuse 01 Werbeagentur, Berlin
Science Communication Lab, Kiel
Azadeh Shahsavar, EMBL, DANDRITE
David von Stetten, EMBL
Universität Hamburg
Deutsches Elektronen-Synchrotron DESY
A Research Centre of the Helmholtz Association

The Helmholtz Association is a community of 18 scientific-technical and biological-medical research centres. These centres have been commissioned with pursuing long-term research goals on behalf of the state and society. The Association strives to gain insights and knowledge so that it can help to preserve and improve the foundations of human life. It does this by identifying and working on the grand challenges faced by society, science and industry. Helmholtz Centres perform top-class research in strategic programmes in six core fields: Energy, Earth & Environment, Health, Aeronautics, Space and Transport, Matter, and Key Technologies.

www.helmholtz.de