In situ X-ray measurements on mm-sized samples at high p-T in the Large Volume Press at P61B, PETRA III

SRI Conference

PS16.1 New opportunities in high-pressure research

Robert Farla 28.03.2022

Collaborators:

Shrikant Bhat, Stefan Sonntag, Artem Chanyshev (BGI), Shuailing Ma (Jilin), Christian Lathe, Kristina Spektor (Leipzig), Adrien Neri (BGI), Tomoo Katsura (BGI), Ulrich Häussermann (Stockholm), Holger Kohlmann (Leipzig) **All DESY Support Groups are gratefully acknowledged**

P61B LVP Mission

Applications in geo- and material sciences:

For 50% beam time:

- Phase relations:
 - Transformation/nucleation
 - Melting curves (solidus/liquidus)
 - Equations of state
- Crystallography (later w/ CAESAR or monochromator)
- Controlled rock deformation
- Melt viscosimetry measurements
- Structure of amorphous materials

For 50% experiment time:

- Synthesis of novel (recoverable) materials
 - Band-gap tuning/semiconductors, optical windows, super-hard/conductive, catalyzers, hydrogen storage
- In-house tests/research
- 'Rapid access' (short-term proposal, no external review)

Complementary in situ techniques:

- Ultrasonic interferometry
- Acoustic Emissions testing
- Electrical conductivity (pending)

	Introduction	BL parameters	HP techniques	Instrumentation	Development	Research		S	ummary	
Ρ	61 B LVP	Missi	on							
	rst publications									
ГП	ist publications	s using A-ra	iys							
Article Nature Vol 601 6				6 January 2022 69						
D	epressed 660)-km disco	ontinuity cau	used by						
al	kimotoite-br	idgmanit	etransition	Review of Scientific Instrum	ents	,	ARTICLE scitation.	org/journal/rsi		
	//1-:	A								
Recei	;//doi.org/10.1038/s41586-021-04157-z ived: 26 November 2020	Artem Chanyshev ^{1,24} , Takayuki Ishii ^{2,43} , Dmitry Bondar', Shrikant Bl 26 November 2020 26 November 2020 26 November 2020								
Acce	cepted: 18 October 2021 and temperature to 50 GP						3300 K			
Open	shed online: 5 January 2022	The 660-kilometre seismic	discontinuity is the boundary bet	$\frac{1}{M}$ in multi-anvil apparatus						
						lus				
Contributions to Mineralogy and Petrology (2021) 176:77 https://doi.org/10.1007/s00410-021-01829-x			Cite as: Rev. Sci. In: Submitted: 8 June Published Online: 5	Cite as: Rev. Sci. Instrum. 92, 103902 (2021); doi: 10.1063/5.0059279 Submitted: 8 June 2021 • Accepted: 10 September 2021 • Published Online: 5 October 2021						
ORIGINAL PAPER				Longjian Xie, ^{1,2,a)} 💿 Artem Chanyshev, ^{1,3} Takayuki Ishii, ^{1,4} Dmitry Bondar, ¹ 💿 Keisuke Nishida, ¹ 💿 Zhen Chen, ⁴ Shrikant Bhat, ³ 🝺 Robert Farla, ³ 🝺 Yuji Higo, ⁵ Yoshinori Tange, ⁵ 🝺 Xiaowan Su, ⁶ BingMin Yan, ⁴ Shuailin Ma, ^{3,4} and Tomoo Katsura ¹						
De in tec	termination of phas the Mg ₂ SiO ₄ –Fe ₂ SiO chniques	e relations of t ₄ system at 174	he olivine–ahrens Ю K using modern	ite transition multi-anvil	An elect ferromag mangane	An electrically conductive and ferromagnetic nano-structure manganese mono-boride with high			From th	ne journal: Oscale
Arte Shri	em Chanyshev ^{1,2} • Dmitry Bo kant Bhat ¹ • Robert Farla ¹ • Tor	ondar ² • Hongzhan Fei ² moo Katsura ^{2,3}	• Narangoo Purevjav ² • Tak	ayuki Ishii ^{2,3} • Keisuke	Nishida ² . VICKErS f	laraness				
Recei	ived: 31 March 2021 / Accented: 11 Aug	iust 2021			Shuailing Ma, ^{ab}	Robert Farla, ^D Kuo Bao,* ^a Ak	hil Tayal, ^p Yongsheng	<u>Zhao</u> , ^{ao} Qia	ang Tao, ^a Xig	<u>gui Yang,</u>
ecci					[™] <u>Teng Ma</u> , ^a	Pinwen Zhu ^a and <u>Tian Cui</u> 回	* au			
DECI	V Ctatus & development of			2						Daga 2

P61B LVP Mission

First publications using X-rays

Article

Nature | Vol 601 | 6 January 2022 | 69

Depressed 660-km discontinuity caused by motoite-bridgmanitetransition Review of

Extreme conditions research using the large-volume press at the P61B endstation, PETRA III

Robert Farla,^a* Shrikant Bhat,^a Stefan Sonntag,^a Artem Chanyshev,^{a,b} Shuailing Ma,^{a,c} Takayuki Ishii,^{b,d} Zhaodong Liu,^{b,c} Adrien Néri,^b Norimasa Nishiyama,^{a,e} Guilherme Abreu Faria,^f Thomas Wroblewski,^{a,f} Horst Schulte-Schrepping,^a Wolfgang Drube,^a Oliver Seeck^a and Tomoo Katsura^b

Shrikant Bhat¹ · Robert Farla¹ · Tomoo Katsura^{2,3}

Development

Beamline layout

The Large Volume Press (LVP) extreme conditions beamline (50% X-rays, 50% stand alone)

Development

Research

À

High-pressure techniques

Standard assemblies for in situ hydrostatic high-pressure experiments

'Kawai' 6-8 mode

Recovered assembly after compression

ameters

HP techniques

Instrumentation

Development

Research

Summary

High-pressure techniques

Standard assemblies for in situ studies of rock deformation

'Cubic' 6-6 mode (p = 0.5 - 4 GPa)

New! Large cBN anvil (X-ray transparent)

Compatible with Acoustic Emissions (AE) detection

'Cubic' triple-6 mode (p > 5 GPa)

← 38 mm →

X-ray transparent sintered diamond anvils

The whitebeam X-ray microscope

X-ray radiography

- PCO.edge 5.5 MP sCMOS
 - True global & rolling shutter
 - 100 fps @ full-resolution (up to 1000 fps for ROI)
 - Live view & frame capture
 - LVP Z-stage imaging scan
- Double objectives (5x, 10x)
 - high-resolution
 - full beam
- Scintillators (thickness):
 - **GGG:Eu** 20, 40 μm
 - LuAG:Ce

•

- 20, 40 µm
- GaGG:Ce-HL
 - 150, 200 µm, ultra-bright

D1 & D2 at +10°, -10° D1 & D2 at +5°, -5°

D1 at +23

2. Ideal for low-Z (X-ray transparent) samples.

 \rightarrow multiple samples in one experiment

Various

positions

measurement

1. High spatial resolution (define gauge volume)

 \rightarrow avoid high temperature & pressure gradients

- 3. Fast acquisition (10-100 s) covering large Q-range.

X-ray powder diffraction using white beam

Instrumentation

HP techniques

Development

Beamline software tools

Available from the website

 Data file conversion HDF5 (nxs) → txt and GSAS2 formats

Simultaneous P and T estimation in a cell
assembly using pressure standards

Why? To simplify the HP assembly

Cell Assembly (Kawai-type Apparatus, to 16 GPa)

Problems with thermocouple

- Can break any time / report false readings
- Does not measure true sample T
 - Typical > 30 °C gradient
- Requires (unknown) pressure correction on emf
- Disturbs pressure distribution / adds stress
 - or hot spots/instability in case of drilled furnace

11.43 mm

Development

Beamline software tools

Simultaneous P and T estimation in cell assembly using pressure standards

Ideal PT marker candidates are :

- Highly symmetric (cubic structure),
- Plastically isotropic,
- Non-reactive,
- Stable over large PT ranges,
- Good compressibility or thermal pressure (i.e. expansion)

Example combinations:

High compressibility, low thermal pressure

- NaCl (B1/B2), KCl and other salts/halides Moderate compressibility, thermal pressure
- SiC (cubic form)
- MgO

Low compressibility, high thermal pressure

Many metals, including Pt, Au, Ni, ...

Development

Beamline software tools

Simultaneous P and T estimation in cell assembly using pressure standards

Least parallel isochors minimize PT uncertainties for equivalent errors in the lattice constants from a best fit

Instrumentation

Development

Research

Summary

Acoustic Emissions S. Ma (Jilin Uni, China/DESY) J. Gasc (Uni Montpellier) S. Incel (Bochum)

Acoustic Emissions testing

Methodology (MA6-6 compression)

'16/12' AE assembly in the LVP

triggered (raw) waveforms and pre-calculated AE characteristics of events.

Acoustic Emissions testing

Some results on cracking of silica glass in situ

Adaptable MATLAB scripts for processing require only:

Developmen

Research

Acoustic Emissions S. Ma (Jilin Uni, China/DESY) J. Gasc (Uni Montpellier) S. Incel (Bochum)

Manuscript in preparation

irameters

Instrumentation

Development

Research

Summary

Ultrasonic Interferometry

R. Farla (DESY) A. Neri (BGI)

Lianjie Man (BGI)

Wave speed measurements

Ultrasonic Interferometry: Now available at P61B

General method

(1) A LiNbO3 sensor of choice on the back of a mirror polished anvil, transmits a pulse and receives an echo.

(2) Simultaneous imaging (**radiography**) provides sample length with sub-pixel resolution (< 1 μ m).

(3) Wave speed at given P,T is calculated to determine elastic moduli (with density information) and/or pressure.

→ Simultaneous measurement of P and S wave travel time, density, and sample length.

 \rightarrow Acquisition routine is scripted using python.

ent

Summary

Summary

Dedicated user operation at P61B

- LVP upgraded for wide range of *in situ* and *ex situ* experiments for wide P and T ranges.
- Ge-detectors provide excellent XRD data quality, high count rate (200+ kcps), low acquisition time.
- Development of user-friendly GUIs and tools.

Support for new *in situ* experiments

- 1. Controlled rock deformation (2 Ge-SSD)
- 2. Acoustic Emissions (AE) w/ deformation
- 3. Ultrasonic wave speed measurements (using 26 mm or 32 mm WC cubes)
- 4. Falling sphere viscosimetry (w/ GaGG:Ce scint.)

Thank you for your attention!

Look for a poster by Dr. Christian Lathe in CMWS

Contact

DESY. Deutsches	Robert Farla			
Elektronen-Synchrotron	FS-PETRA-D			
	robert.farla@desy.de			
www.desy.de	Tel: 4470			