Status & development of P61B LVP at PETRA III, DESY

Beamline satellite workshop

Robert Farla 25-01-2022

Collaborators:

Shrikant Bhat, Stefan Sonntag, Artem Chanyshev (BGI), Shuailing Ma (Jilin), Christian Lathe, Kristina Spektor (Leipzig), Adrien Neri (BGI), Tomoo Katsura (BGI), Ulrich Häussermann (Stockholm), Holger Kohlmann (Leipzig) **DESY Support Groups: FS-BT, FS-EC, FS-TI, Machine group**

Research & Dev.

P61B LVP Mission

Applications in geo- and material sciences:

For 50% beam time:

- Phase relations:
 - Transformation/nucleation
 - Melting curves (solidus/liquidus)
 - Equations of state
- Crystallography (w/ CAESAR or monochromator)
- Controlled rock deformation
- Melt viscosimetry measurements
- Structure of amorphous materials

- Complementary *in situ* techniques:
 - Ultrasonic interferometry
 - Acoustic Emissions testing
 - Electrical conductivity (pending upon request)
- For 50% experiment time:
- Synthesis of novel (recoverable) materials
- Othe

Introduction	BL parameters HP tec	nniques	Development	Research		
P61B LVF	Mission					
First publication	s using X-rays					
Article	Nature Vol 601 6 January 2022 69					
Depressed 66	0-km discontin	uity cau	ised by			
akimotoite-b	ridgmanite trai	nsition	Review of Scientific Instrum	ents		
https://doi.org/10.1038/s41586-021-04157-z	Artem Chanyshev ^{1,2⊠} , Takayuki Ishii ^{2,3⊠} , Dm Robert Farla ¹ , Keisuke Nishida ² , Zhaodong L	iitry Bondar², Shrikant B iu²², Lin Wang²5, Ayano	Simultar			
Accepted: 18 October 2021	Hu Tang ³ , Zhen Chen ³ , Yuji Higo ⁷ , Yoshinori Tange ⁷ & Tomoo Katsura		Sinuta	inditalleous g		

The 660-kilometre seismic discontinuity is the boundary betwee

mantle and transition zone and is commonly interpreted as bei

generation of ultrahigh pressure and temperature to 50 GPa and 3300 K in multi-anvil apparatus

Contributions to Mineralogy and Petrology (2021) 176:77 https://doi.org/10.1007/s00410-021-01829-x	Cite as: Rev. Sci. Instrum. 92, 103902 (2021); doi: 10.1063/5.0059279 Submitted: 8 June 2021 • Accepted: 10 September 2021 • Published Online: 5 October 2021	View Online	Export Citation	CrossMark
ORIGINAL PAPER	Longjian Xie, ^{1,2,a)} (b) Artem Chanyshev, ^{1,3} Takayuki Ishii, ^{1,4} Dmitry Bondar, ¹ (b) Keisuke Nishida, ¹ (b) Zhen Chen, ⁴ Shrikant Bhat ³ (b) Robert Farla ³ (b) Yuji Higo, ⁵ Yoshinori Tange ⁵ (b) Xiaowan Su ⁶ BingMin Yan ⁴ Shuailin Ma ^{3,4}			
	and Tomoo Katsura ¹			

Determination of phase relations of the olivine–ahrensite transition in the Mg₂SiO₄–Fe₂SiO₄ system at 1740 K using modern multi-anvil techniques

Artem Chanyshev^{1,2} · Dmitry Bondar² · Hongzhan Fei² · Narangoo Purevjav² · Takayuki Ishii^{2,3} · Keisuke Nishida² · Shrikant Bhat¹ · Robert Farla¹ · Tomoo Katsura^{2,3}

Received: 31 March 2021 / Accepted: 11 August 2021

Published online: 5 January 2022

Open access

scitation.org/journal/rsi

From the journal: Nanoscale

Shuailing Ma,^{ab} Robert Farla,^b Kuo Bao,^{*a} Akhil Tayal,^b Yongsheng Zhao,^{ab} Qiang Tao,^a Xigui Yang, (D^c Teng Ma,^a Pinwen Zhu^a and Tian Cui (D^{*ad}

ARTICLE

Development

Research

Summary

Beamline layout

The Large Volume Press (LVP) extreme conditions beamline (50% X-rays, 50% stand alone)

Developme

Researc

High-pressure techniques

Standard assemblies for in situ hydrostatic high pressure experiments

'Kawai' 6-8 mode

Original assembly design by Dr. Nishiyama

High-pressure techniques

Standard assemblies for in situ studies of rock deformation

'Cubic' 6-6 mode (p = 0.5 - 4 GPa)

New! Large cBN anvil (X-ray transparent)

- Compatible with WC anvils - 12 mm TEL → 0.5 - 4 GPa - 9 mm TEL evaluated
- Compatible with Acoustic Emissions detection.

'Cubic' triple-6 mode (p > 5 GPa)

X-ray transparent sintered diamond anvils

designed with

Generally for ex-situ synthesis

Development

Researc

Summar

The whitebeam X-ray microscope

X-ray radiography

- **Double objectives (5x, 10x)** for high-resolution, full beam imaging
- Scintillators:
 - (*in use*) **GGG:Eu** 20, 40 μm
 - LuAG:Ce 20, 40 μm
 - GaGG:Ce-HL 150, 200 µm
 New! Ultra-bright e.g. for viscosimetry
- PCO.edge 5.5 MP sCMOS camera
 - True global & rolling shutter
 - 100 fps @ full-resolution (up to 1000 fps for ROI)
 - Live view & frame capture
 - LVP Z-stage imaging scan

Optique Peter

OPTICAL & MECHANICAL ENGINEERING

pco.

20

18

16

14

12

10

6

(2π/d)

Ø 8

Development

Research

X-ray powder diffraction using white beam

Energy-dispersive X-ray diffraction (ED-XRD) in the Large Volume Press

- High spatial resolution (define gauge volume)
 → avoid high temperature & pressure gradients
 → multiple samples in one experiment
- 2. Ideal for low-Z (X-ray transparent) samples.

60

40

20

3. Fast acquisition (10-100 s) covering large Q-range.

18° *

1<u>⊿</u>°

12°

10°

٩°

6°

Detector position

(2θ

DESY. | Status & development of P61B LVP at PETRA III | R. FARLA, 25-01-2022

Energy (keV)

80 100 120 140 160

Summary **Development** X-ray powder diffraction using white beam **Energy-dispersive X-ray diffraction (ED-XRD) in the Large Volume Press** MIRION TECHNOLOGIES **Measurement** positions **5°** \rightarrow A world of possibilities!

D1 & D2 at +10°, -10°

D1 & D2 at +5°, -5°

D1 at +23°

Development

Research

X-ray powder diffraction using white beam

Energy-dispersive X-ray diffraction (ED-XRD) in the Large Volume Press

Summar

Development

Research

Summary

X-ray powder diffraction using white beam

Combined angle and energy-dispersive structural analysis refinement (CAESAR) (Wang et al. 2004) First preliminary result

Development

Research

X-ray powder diffraction using white beam

Beamline software tools (available from the website)

- Data file conversion HDF5 (nxs) → csv and GSAS1 formats.
- Detector energy calibration using radionuclides
 → obtain linear or quadratic relation between channel # and energy.
- **3. 20** calculator for pressure standards (MgO, NaCl) as well as other materials (e.g. Ni and Al_2O_3).
- **4. Simultaneous P and T estimation** using Equation of State of pairs of materials in cell assembly.

Research

Summary

Acoustic Emissions testing

Methodology (MA6-6 compression)

Magnified portion of an 'event': nearlysimultaneous hits on the sensors of each of the 6 anvils.

Very Wideband Frequency Miniature Sensor -110 -120 0.2 0.3 0.2 0.1 0.1 -0.1 -0.1 -0.2 -0.2 Anvil 1 -0.3 -0.3 1.49 1.5 1.51 1.52 ×10⁻⁴ 0.15 0.2 0.1 0.1

-0.3

Aim: to investigate focal mechanisms & radiated energy of crack propagation.

Summary Research **Acoustic Emissions testing** Acoustic Emissions S. Ma (Jilin Uni China/DESY) New, fast data processing techniques using MATLAB, incl. improved 3D location . Gasc (Uni Montpellier) S. Incel (Bochum) Average MARSE Energy (Ch1-6) MARSE Energy Average Duration (Ch1-6) Duration 10³ P ~ 0.5 GPa 700 MARSE Energy, n=178 Duration, n=178 0 **Fused silica** 600 glass 0 0 **B**-epoxy ∞ 500 cube

Adaptable scripts for processing AE data available.

h-BN

sleeve

Requires only extraction of triggered (raw) waveforms of events and AE characteristics calculated by AEwin software.

arameters

HP techniques

Development

Research

Summary

Ultrasonic Interferometry R. Farla (DESY) A. Neri (BGI) Lianjie Man (BGI)

Ultrasonic Interferometry: Now available at P61B

Setup at GSECARS, APS (USA) – Jing et al. 2020

General method

(1) A LiNbO3 sensor of choice on the back of a mirror polished anvil, transmits a pulse and receives an echo.

(2) Simultaneous imaging (**radiography**) provides sample length with sub-pixel resolution (< $1 \mu m$).

(3) Wave speed at given P,T is calculated to determine elastic moduli (with density information) and/or pressure.

→ Simultaneous measurement of P and S wave travel time, density, and sample length.

→ Acquisition
 routine can be
 scripted using python.

DESY. | Status & development of P61B LVP at PETRA III | R. FARLA, 25-01-2022

Development

Researc

Summary:

Beamline collaboration partners

- UHP geo-research (BGI, Bayreuth)
- Ternary hydrides (Stockholm/Leipzig Uni)
- Water-related HP research in CMWS (GFZ)
- Targeting in-house research goals for project oriented funding (Helmholtz)

User operation started at P61B

- LVP upgraded for wide range of *in situ* and *ex situ* experiments for wide P and T range.
- Ge-detectors provide excellent XRD data quality, high count rate (200+ kcps), low acquisition time.
- Development of user-friendly GUIs.

Support for new in situ experiments

- 1. Controlled rock deformation (2 Ge-SSD)
- 2. Acoustic Emissions (AE) w/ deformation
- 3. Ultrasonic wave speed measurements (using 26 mm or 32 mm WC cubes)
- 4. Falling sphere viscosimetry (w/ GaGG:Ce scint.)

Thank you for your attention!

Research

Beamline portfolio complete

Development

Research

٠

Researc

PETRAIV. 5 W's & How NEW DIMENSIONS Who? Us!

Why? See CDR report at DESY.de

What? New *in situ* LVP beamline at PETRA IV, supported by proposals from the user community. Thank you!!!

Where? LVP position to be decided:

When? PETRA III end operation: early 2026

PETRA IV BL operation: 2028 (existing halls), 2029-30 (West hall).

How? Possible BL concept:

- High energies (40 120 keV harmonics) / ultra-high brilliance
- *New detectors: High-res PXRD / Imaging / µ-tomography*
- CRLs for expanding/focusing beam
- EH1: X-rays ~30-50% for smaller (portable) LVPs: (1) PE-Press / (2) ultra-high P LVP / (3) other, e.g. RoToPEc.
- EH2: X-rays ~50-70% for Aster 6-ram LVP (plus 50-30% offline operation)

Contact

DESY. Deutsches	Robert Farla		
Elektronen-Synchrotron	FS-PETRA-D		
	robert.farla@desy.de		
www.desy.de	Tel: 4470		