Current and future role 'Paul P. Ewald' of P61B in Nano-Mat

Deutsches Elektronen-Synchrotron DESY

A Research Centre of the Helmholtz Association

Research at High Pressure and Temperature

Robert Farla¹, Shrikant Bhat¹, Shuailing Ma^{1,2}, Kristina Spektor^{1,3}, Stefan Sonntag¹, Ralf Riedel⁴, Ulrich Häussermann⁵, Holger Kohlmann³

¹Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany – ²State Key Laboratory of Superhard Materials, Jilin University, Changchun, China – ³Leipzig University, Germany ⁴Material- und Geowissenschaften, Technische Universität Darmstadt, Germany – ⁵Department of Materials and Environmental Chemistry, Stockholm University, Sweden

Mission statement

To probe the structure and properties of materials in situ at high pressures and temperatures in a Large Volume Press (LVP) using X-ray diffraction and imaging techniques, as well as using complementary ultrasonic and electrical resistivity methods.

Applications in geo- and materials sciences:

- Phase relations:
 - Transformation/nucleation

LVP & detector specifications

P61

P65 P64

mavo press LPQ6-1500-100	6 indep. controlled rams
Maximum load	15 MN – 5 MN/axis
Ram position control	1 µm step – 100 mm
Oil pressure control	0.5 bar – 620 bar/ram
Anisotropic compression	Axial symmetric, triaxial
5-axis stage	x,y1,y2,z (± 100 mm), rotation: ± 11.5°
Combined weight	ca. 45 ton
Ge-detector (2x) – ED XRD	Mirion (Canberra)
Collimator slit (mm)	0.03, 0.05, 0.1, 0.2
Receiving slits (mm)	0.05, 0.1, 0.2, 0.5, 1.0, 2.0
Horz. detector positions	1xGe: min 4° - max 20° 2xGe: min 5° - max 10°
Horz. & vert. positions	Ge _{vert} : min 7.5° - max 23° Ge _{horz} : min 6.5° - max 10°

Beamline P61 specifications

Source	10x wigglers
Length (m)	10 x 4
Period length (mm)	200
# periods	10 x 19
Peak field B0(T)	1.52
Def. parameter K	28.4
Max. power (kW)	10 x 21
Usable energy range P61B	30 – 160 keV (Ge-SSD)
Power density P61B	16 W/mm ²
Filtered power P61B	12 – 10 W/mm ²
Peak flux density P61B @ 50 keV	10 ¹² ph/s/mm²/0.1% b.w.
Max. beam size P61B	2.2 mm (h) x 1.7 mm (v)
Min. beam size P61B	0.03 mm x 0.03 mm

- Melting curves (solidus/liquidus)
- Equations of state
- Crystallography
- Controlled rock deformation
- Melt viscosity measurements
- Structure of amorphous materials
- Ultra-high pressure (60+ GPa) & temperature (3000 K)

Additional methods:

- Ultrasonic wave speed measurements
- Acoustic Emissions testing
- Electrical conductivity (coming up)

A high-pressure beamline for synthesis and *in situ* characterisation of novel materials

Overview

Beamline P61B has experience producing novel materials at high pressures and temperatures.

High-pressure solid-state synthesis opens up new possibilities to explore material reactions, which would be energetically (and otherwise dynamically) unfavourable to occur. The LVP offers mm- to cm-sized samples, which can be synthesized and simultaneously characterized in situ by ED XRD, and recovered metastably for further ex situ analysis.

Particularly, using *in situ* synchrotron X-ray diffraction techniques, hitherto unknown thermodynamic and kinetic pathways for optimal synthesis at high pressures and temperatures can be explored and controlled. A range of different end products can be recovered with interesting properties such as electronic, magnetic, structural and vibrational for a wide range of applications. The discovery of unexpected highpressure physical and chemical processes, which lead to the formation of novel materials, becomes the rule rather than the exception.

Common classes of materials

• Carbides *Examples*: Diamond, SiC, WC,... Applications: cutting tools, machine components, quantum computers,...

Borides

Examples: Metal-B, Metal₂B,... Applications: Fiberglass, cutting tools, electromotors,...

Nitrides

Examples: h/cBN, Si_3N_4 , TiN, AIN,... Applications: cutting tools, solar panels, LEDs, circuits,...

• Hydrides

Assemblies and pressure generation

Compression in the LVP

energy-dispersive

Examples: MgH₂, NaAlH₄, LiAlH₄,... Applications: H₂ storage, batteries, superconductors,...

Oxides

Examples: TiO₂, ZnO, Fe-oxide,... Applications: magnets, fuel cells, electronics, catalysts,...

Silicates *Examples*: SiO_2 , (Mg,Fe)₂ SiO_4 ,... Applications: Glass production, load sensors, microchips, biomedical,...

Beamline research highlights

I. Discovery a new ternary silicon titanium nitride

The novel nitride is formed from an amorphous silicon titanium nitride (SiTiN) precursor under high-PT conditions in the P61B Large Volume Press. Under conditions of 15-20 GPa and 1800–2000°C, spinel-type γ -Si₃N₄ and rock salt-type c-TiN are formed. In addition, crystals of the discovered nanosized ternary phase $(Si_{1-x}Ti_x)_3N_4$ embedded in γ -Si₃N₄ are identified. The ternary compound is analyzed to exhibit the spinel-type structure with ca. 8 atom% of Ti. The Ti atoms occur in both Ti³⁺ and Ti⁴⁺ oxidation states and are located on the Si sites.

Left: ADF-STEM Ti-L_{2,3} image obtained from bulk a single grain, with Ti-K edge STEM-EDX, and atomic resolution ADF-STEM image on the boundary of the ternary (Si,Ti)₃N₄ particle. Right: EELS (Si,Ti)profile of the Ti-L_{2.3} edge across the nano-particle. 450 460 470 Energy loss (eV)

II. High-pressure synthesis of manganese boride (α-MnB)

• Due to large numbers of unpaired electrons of manganese

III. New synthesis route for quenchable ternary hydrides targeting room T (high-P) superconductors

Previous results

Investigation of a reaction mixture NaH/Ni/H₂ at ~5.5 GPa. Initially, after BH₃NH₃ decomposition & H₂ fluid formation, NiH forms which then reacts to previously unknown polymorphic Na_3NiH_5 (cmcm), which transforms into a quenchable polymorph (Pnma) below 3 GPa. The cubic high-temperature form is dynamically disordered, whereas the orthorhombic low-temperature phase is ordered. Above 10 GPa, metallic perovskite NaNiH₃ forms.

Bhat, S. et al. Sci Reports 2020, 10, 7372. DOI: https://doi.org/10.1038/s41598-020-64101-5 ions and strong covalent boron zigzag chains, MnB exhibits strong ferromagnetic, magnetocaloric behavior, and possesses high Vickers hardness.

- Zigzag boron chains in the α -MnB structure not only play a pivotal role in strengthening mechanical properties, but also tune the exchange correlations between manganese atoms.
- The unique combination of high hardness, magnetism, and electrical conductivity properties makes it a particularly promising candidate for a wide range of applications, such as high-speed motors and magnetic sensors in micro-mechanical systems.

\rightarrow See poster by Shuailing Ma \rightarrow

Current objectives at P61B

Exploring potentially superconducting hydrogen-rich hydrides with ternary compositions: A-X-HA = Li, Mg, Sc, Y, La; X = Si, Ge, P, S in the LVP at pressures up to 20 GPa, elucidating P,T formation conditions and reaction pathways.

> Spektor, K. et al. ACS Omega. 2020, 5, 8730-8743. DOI: https://doi.org/10.1021/acsomega.0c00239

HELMHOLTZ **RESEARCH FOR GRAND CHALLENGES**

