



#### In situ rock deformation and liquids under extreme conditions

#### the value of specialized LVPs at PETRA IV



#### M. J. Sieber



N. Hilairet Th 9:40 am





## Rheology studies in situ rock deformation

Why interesting?

- $\succ$  mantle convections
  - driving tectonics, causing volcanic and seismic activities



Why are rheology studies under extreme conditions in a LVP needed?

- ➤ stress & strain can be monitored & measured
- ➤ sufficient number of grains
- > uniform & stable PT-conditions over wide strain rates





Hilairet et al. 2012

D-DIA

### in situ rock deformation (2D) AD-XRD & radiographic imaging



Wang Y. B., et al. (2010). Journal of Earth Science 21, 495-516. Hilairet N., et a. (2012). Journal of Geophysical Research 117, B01203.





## Large Volume Press @ PETRA IV





**6-ram MA (P61.B)** 20 GPa, 2000 K (40 GPa; 2000 K)

➤ axial deformation (rheology)



(2D) AD-XRDimaging (radiography)



- improved resolution in stress and strain measurements (also for rocks)
- directional, monochromatic X-ray beam with high coherence and low-emittance
  - $\blacktriangleright$   $\Delta E/E \sim 10^{-3}$  to  $10^{-4}$
  - ➢ 40-100 keV
  - large-radius area detector
  - highly focused beam



# Liquids under extreme conditions

Why interesting?

- $\succ$  relevant to the origin and evolution of planets
- ➤ heat and mass transfer influence the chemical and thermal history of Earth's interior



Why are studies of liquids under extreme conditions in a (PE) LVP needed?

- ➤ some liquids are non-quenchable
- $\triangleright$  e.g. viscosity, density, structure of a melt but also melting point and melt propagation can best be studied in situ
- > precise PT control (over time)
- ➢ post mortem characterization possible
- composite materials (multi-grain rocks)

#### Paris-Edinburgh LVP advantage: wide opening angle





### Liquids under extreme conditions X-ray absorption imaging / tomography



<u>X-ray absorption imaging / tomography</u>



Rhyolite melt percolation through the mantle Boulard E., et al. 2018

➢ finely ground rhyolite & olivine crystals

➢ P=3 GPa; ≤1600 K

▶ rotation 135°, 10 msec exposure time

 $\rightarrow$  10 sec for a tomogram

PE installed @ PSICHE, SOLEIL









Number of iron beads: 964 Mean size of iron beads: 812 µm3 Total volume of iron: 0.0007mm3







Number of iron beads: 609 Mean size of iron beads: 1948 µm<sup>3</sup> Total volume of iron: 0.0012mm<sup>3</sup>



#### Liquids under extreme conditions X-ray absorption imaging / tomography



<u>X-ray absorption imaging / tomography</u>



Compressibility of basaltic glass Álvarez-Murga M., et al. 2017  $\succ$  5 basaltic glass beads in h-BN ▶ P=0-4.4 GPa; RT **≻ rotation 180°**, 0.15° s<sup>-1</sup>  $\rightarrow$  20 min for a tomogram



#### RoToPEc

installed @ PSICHE, SOLEIL











#### Liquids under extreme conditions X-ray absorption imaging / tomography



X-ray absorption imaging / tomography



<u>Compressibility of basaltic glass</u>
Álvarez-Murga M., *et al.* 2017
▶ 5 basaltic glass beads in h-BN
▶ P=0-4.4 GPa; RT
▶ rotation 180°, 0.15° s<sup>-1</sup>
→ 20 min for a tomogram

RoToPEc installed @ PSICHE, SOLEIL





#### 3 GPa 1800 K



Universität Potsdam



#### Liquids under extreme conditions X-ray phase contrast imaging



X-ray phase contrast imaging



Liquid phase separation and liquid-liquid immiscibility Kono Y., et al. 2015 > 40 wt% albite & 60 wt% calcite > P=2.5 GPa; 1350-1500 °C > movie: 60 frames/sec

PE installed @ 16-BM-B, APS





#### X-ray diffraction / scattering µ-tomography



200µm





## **Large Volume Press @ PETRA IV**



|                  | <b>PE-LVP (former P02.2); RoToPEc (new)</b><br>10 GPa, 1700 K (20 GPa, 1700 K)                                                                                                                                                                                                               |
|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Research Project | <ul> <li>structure, density and viscosity of liquids</li> </ul>                                                                                                                                                                                                                              |
|                  | <ul> <li>(4D) AD-XRD</li> <li>DSCT (Diffraction Scattering X-ray Tomography)</li> <li>imaging (μ-tomography &amp; radiography &amp; phase contrast)</li> </ul>                                                                                                                               |
|                  | <ul> <li>improved energy resolution (10<sup>-4</sup> for E&gt;40 keV)</li> <li>fast acquisition and high resolution (for 4D imaging)</li> <li>tunable spot size (~1x200 µm to ~2x2 mm)</li> <li>large radius area detector</li> <li>X-ray microscope (for radiography/tomography)</li> </ul> |
|                  | ➢ big data-storage: ~1 TB/day (more?)                                                                                                                                                                                                                                                        |





## **Large Volume Press @ PETRA IV**



|                  | <b>6-ram MA (P61.B)</b><br>20 GPa, 2000 K (40 GPa; 2000 K)                                                                                                                                                                                                                                              | <b>PE-LVP (former P02.2); RoToPEc (new)</b><br>10 GPa, 1700 K (20 GPa, 1700 K)                                                                                       | Uniaxial LVP<br>UHP                            |
|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|
| Research Project | <ul> <li>structural charaterization &amp; phase transitions of<br/>e.g. hydrous minerals and carbonates</li> <li>axial deformation (rheology)</li> </ul>                                                                                                                                                | <ul> <li>structure, density and viscosity of liquids</li> <li>shear deformation (rheology)</li> <li>evolution of microstructures &amp; phase distribution</li> </ul> | <ul> <li>pushing the pressure limit</li> </ul> |
|                  | <ul> <li>(1D/2D) AD-XRD</li> <li>ED-XRD</li> <li>imaging (radiography &amp; phase contrast)</li> </ul>                                                                                                                                                                                                  | <ul> <li>(4D) AD-XRD</li> <li>DSCT (Diffraction Scattering X-ray Tomography)</li> <li>imaging (μ-tomography &amp; radiography &amp; phase contrast)</li> </ul>       | ≻ ED-XRD                                       |
|                  | <ul> <li>improved energy resolution (10<sup>-4</sup> for E&gt;40 keV)</li> <li>fast acquisition and high resolution (for kinetics / 4D imaging)</li> <li>tunable spot size (~1x200 µm to ~2x2 mm)</li> <li>large radius area detector</li> <li>X-ray microscope (for radiography/tomography)</li> </ul> |                                                                                                                                                                      | T. Katsura<br>Th 9:20 am                       |
|                  | ➤ additive in situ characterization (e.g. ultrasound-<br>velocity, electrical-conductivity measurements)                                                                                                                                                                                                | ➢ big data-storage: ~1 TB/day (more?)                                                                                                                                |                                                |



## **Thanks**

| Denis Andrault     | Konstantin Glazyrin | Chrisian Lathe          | Christian Schimpf |
|--------------------|---------------------|-------------------------|-------------------|
| Kai Bagschik       | Jeremy Guignard     | Konstantin Liasov       | Marcus Schwarz    |
| Maged Bekheet      | Ulrich Haussermann  | Hans-Peter Liermann     | Kristina Spektor  |
| Shrikant Bhat      | Nadege Hilairet     | Geeth Manthilake        | Sergio Speziale   |
| Artem Chanyshev    | Astrid Holzheid     | Jean-Philippe Perrillat | Leonore Wiehl     |
| Dominique de Ligny | Tomo Katsura        | David Rafaja            | Max Wilke         |
| Robert Farla       | Kevin Keller        | Hans-Josef Reichmann    |                   |
| Dan Frost          | Monika Koch-Müller  | Chrystele Sanloup       |                   |
| Sindy Fuhrmann     | Eleonora Kulik      | Franziska Scheffler     |                   |