Large Volume Press (LVP)

Exploration of high pressures and temperatures on mm-sized samples at PETRA III and IV

R. Farla Hamburg, 03/11/2020

PETRA IV Workshop - Earth, Environment, and Materials for Nanoscience and Information Technology

A brief history of multi anvil, high-pressure devices

From diamond synthesis to multi-disciplinary research using synchrotron radiation

H. Tracy Hall worked at GE in 1955. When he returned to BYU, he was banned to use the belt-type apparatus to synthesize diamond, so he invented the first generation of multi-anvil apparatus (above and to the right)

1958. The original tetrahedral-anvil apparatus built by H. Tracy Hall at Brigham Young University (BYU)

1967, H. Tracy Hall & the first cubic anvil apparatus developed at BYU, USA to produce diamonds without the belt apparatus

P_{max} = 10 GPa T_{max} > 3000 K

Seismology and Structure of the Earth

tana tana Adam Dziewonski & Barbara Romanowice tanana Char Gerald Schubert

A brief history of multi anvil, high-pressure devices

From diamond synthesis to multi-disciplinary research using synchrotron radiation

Brief history of meetings

- 1955: first GRC (Gordon Research Conferences), USA
- 1963: first **EHPRG** (European High Pressure Research Group) meeting, Harlow, UK.
- 1965: first European/International effort,
- **AIRAPT** ("Association Internationale pour Avancement de la Recherche et de la Technologie aux Hautes Pression")
- 1976: first US–Japan bilateral seminars on high pressure mineral physics, now International meeting, **HPMPS**.

1968. First Japanese tetrahedral LVP (photo taken in 1991 at ISSP)

MAX-80: multi-anvil-type X-ray system, 1980

A brief history of advances

1964, USA, Barnett and Hall interfaced the tetrahedral-anvil apparatus with a laboratory X-ray source to perform *in situ* X-ray diffraction studies for the first time.

1968, Japan, Akimoto wanted to study the Earth's transition zone (400 - 700 km, P > 13 GPa) and built the first Japanese tetrahedral press (on the left).

1979, Japan, Ohtani et al. achieved *in situ* XRD using Philips Mo target tube to calibrate target pressures up to 22 GPa (GaP transition).

Switch to synchrotron sources for *in situ* XRD in LVP: 1980, MAX-80 at PF (KEK), Japan 1991, MAX-80 at DORIS III, HASYLAB, Hamburg 1992, SAM-85 at X17B2, NSLS, USA 1998, SPEED-1500 / Mk.II at SPring-8, Japan

The New Alchemists REFACING THROUGH THE DARRING OF HICH PRESSURE Robert M. Hazen

Seismology and Structure of the Earth

name tanes Adam Dziewowski & Barbara Romanowice tanon-tan Gerald Schubert

A brief history of multi anvil, high-pressure devices

From diamond synthesis to multi-disciplinary research using synchrotron radiation

Primary motivation:

The desire to study the behaviour of materials at simultaneous pressures and temperatures. → Earth Science community aims to replicate in the laboratory the P–T conditions of the Earth's deep interior.

The Diamond Anvil Cell (DAC) VS LVP

The race to the highest pressures was won by use of DAC (in 1976). However, more parameters are important:

- uniformity and volume of uniform pressure
- hydrostaticity, deviatoric stress (when desirable)
- pressure gradient (when desirable)
- accuracy, uniformity & temporal constancy of temperature, gradients (when desirable)
- access for X-rays

The Hall-type LVP at PETRA III, DESY

MAVO press LPQ6-1500-100 Built by Voggenreiter, GmbH (Mainleus, Germany)

Installed at P61 since 2015 featuring 6 independently controlled, hydraulically driven rams.

Specs:

- Max. 5MN force per axis, at 620 bar.
- Ram stroke: 100 mm.
- Control accuracy: +/- 1 um / 0.5 bar
- Compress rate: 0 100 bar/min
- 5-axis stage below press

P61B LVP Mission

XRD and imaging in geo- and material sciences:

- Phase relations:
 - Transformation/nucleation
 - Melting curves (solidus/liquidus)
 - Equations of state
- Crystallography (w/ CAESAR or mono)
- Controlled rock deformation
- Melt viscosity measurements
- Structure of amorphous materials
- Complementary in situ techniques:
 - Ultrasonic interferometry
 - Acoustic Emissions testing
 - Electrical conductivity

Synthesis of novel functional materials

P02.2 ECB

- Extreme pressures (1 TPa)
- Small (0,001 mm³) samples
- Single phase (typically)

Beamlines are complementary!

P61B

- Ultra-high pressures (60±0.1 GPa) Large (100 mm³) samples Polymineralic rock
- → Study of grain boundary transport properties (conduction, diffusion, rheology) !

Pressure generation in the DESY 'Hall-type' 6-ram LVP

In situ wave speed measurements

Ultrasonic interferometry technique combined with in situ X-ray diffraction and imaging

Setup at GSECARS, APS (USA) - Jing et al. 2020

This standard technique will be reproduced at P61B

Since mid-1990s. Measurement of two-way travel time of ultrasonic waves in a sample at high P and T.

(1) A LiNbO3 sensor of choice on the back of a mirror polished anvil, transmits a pulse and receives an echo.

(2) Simultaneous imaging (**radiography**) provides sample length with sub-pixel resolution (< 1 μ m).

(3) Wave speed at given P,T is calculated for determination of elastic moduli (with density information).

Simultaneously measurement of elastic P and S wave travel times, density, and sample length in a LVP combined with synchrotron X-ray radiation techniques enables direct determination of the **cell pressure** and **seismic properties of materials**.

In situ rock deformation studies

Understanding the mechanical properties of materials at high P-T

Since 2002. The first D-DIA type module in a LVP installed at a synchrotron source (GSECARS, APS, USA).

Since 2019, now also at P61B, PETRA III, DESY.

Experiment limitations:

- P_{max} ≈ 18 GPa (with additional 1-2 GPa differential stress)
- T_{max} = e.g. 2000 K
- Strain_{max} ≈ 30% (in compression, more in simple shear geometry)
- Requires min. 2 Ge-detectors (for ED-XRD with white X-rays) or... a large-radius area detector for AD-XRD (better)

Wang et al. Rev. Sci. Instrum. 2003

In situ Acoustic Emissions studies

Assembly design and development (since 2010s)

Simultaneous acoustic emissions monitoring and synchrotron X-ray diffraction at high pressure and temperature: Calibration and application to serpentinite dehydration

Julien Gasc^{a,*}, Alexandre Schubnel^a, Fabrice Brunet^a, Sophie Guillon^a, Hans-J. Mueller^b, Christian Lathe^b

^a Laboratoire de Géologie, CNRS – École Normale Supérieure, 24 rue Lhomond, 75005 Paris, France
^b Helmholtz Centre Potsdam, GFZ German Research Centre for Geosciences, Telegraphenberg, D-14473 Potsdam, Germany

REPORT

Deep-Focus Earthquake Analogs Recorded at High Pressure and Temperature in the Laboratory

Alexandre Schubnel^{1,*}, Fabrice Brunet², Nadège Hilairet^{3,†}, Julien Gasc³, Yanbin Wang³, Harry W. Green II⁴ + See all authors and affiliations

Science 20 Sep 2013: Vol. 341, Issue 6152, pp. 1377-1380 DOI: 10.1126/science.1240206

Science 2013 @ GSECARS, APS

2011 DORIS III @ DESY

Matlab data processing enabled by Dr. Julien Gasc (Montpellier)

Ultra-high pressures using sintered diamond anvils

Recent developments

Pressure in LVP is limited by the hardness of anvil materials

- WC (tungsten carbide) 30 GPa limit, up to 45 GPa/2000 K with special shape.
- Sintered diamond and cBN much harder and X-ray transparent!
 - \rightarrow Also very expensive, smaller and brittle!

1. Most reliable, generate highest pressures: 14 mm SD anvils with **cobalt** binder

2. Most transparent to X-rays, lower pressures:

14 mm SD anvils with SiC binder

3. Hardest/Extreme HP/most expensive: Binderless nano-polycrystalline diamond

Anvil truncation is typically 1.5 mm for UHP experiments in the LVP using Kawai-8 cubic anvils set ups. Sample size is up to 0.5 mm.

Synchrotron radiation for studies in a Paris-Edinburgh LVP

(a) Raw X-ray

blobs in hBN

pressure medium (b) 3D rendered

volume of µCT scan

at 0.9 GPa 300 K.

Different type LVP for different research objectives!

Time resolved 3d-microtomography in a 450 t torsion press, the RoToPEc

Diffraction RoToPEC microscope module objective Absorption CCD camera Positioning motors for the press

scillating motors

Near-full angular access: 360°/0.02° precision, PT range: 15 GPa/ 2500 K, Max. load: 4.5 MN, torsional deformation by anvil rotation.

•

٠

2D XRD pattern and 2D reconstructed slices from *d*-spacing/2 θ of different reflections (C₆₀ polymerization under pressure).

More details on science cases for radiograph of 5 glass the 6-ram LVP and PE @ talk of Dr. Sieber at 16:00 today,

> ...and at the satellite meeting 5-6th of November

New PETRA IV objectives for:

absorption/phase contrast

micro-tomography (2x2 mm²

beam) at extreme conditions.

computed tomography, DSCT

(e.g. 3x3 µm² focused beam)

Synchrotron X-ray

Diffraction/scattering

at extreme conditions.

J. Philippe, et al. 2016 Alvarez-Murga et al. 2017 DESY.

Synchrotron radiation for studies in the Diamond Anvil Cell

It is easier to say what one cannot do in a DAC

Probed materials:

- Single crystal
- Powder diffraction
- Amorphous state (liquid and solid)

Probing techniques (lab):

- Luminescence, Raman, UV
- Resistance measurement
- NMR/EPR and etc.

More details – talks of Dr. C. Prescher, Dr. T. Meier, Dr. C. Sternemann, Prof. Dr. I. Kupenko, and Prof. Dr. D. Kraus starting at 16:20 today

Probing techniques (synchrotron based):

- X-ray diffraction (WAXS, SAXS, resonant scattering, uniaxial, radial, high resolution)
- X-ray spectroscopy
 - X-ray Absorption
 - X-ray Emission
 - X-ray Inelastic Scattering
 - X-ray Mössbauer
 - X-ray Raman
- X-ray imaging (phase contrast, CDI, scanning, full field)

and at the satellite meeting 5-6th of November

PETRAIII - LVP + DAC

Working together for material science

Techniques are complementary & synergetic:

- Synthesized in DAC produced in LVP (larger quantities)
- Produced in LVP characterized in DAC

ChemPubSoc DOI: 10.1002/chem.201904529

Sn₂N₂O is produced in LVP Elasticity is characterized in DAC

|| High-Pressure Synthesis |Hot Paper|

A Novel High-Pressure Tin Oxynitride Sn₂N₂O

Shrikant Bhat, ^{#ik, el} Leonore Wiehl,^[b] Shariq Haseen,^[c] Peter Kroll,^[c] Konstantin Glazyrin,^[a] Philipp Gollé-Leidreiter,^(b) Ute Kolb,^{(b, d]} Robert Farla,^[b] Jo-Chi Tseng,^[b] Emanuel Ionescu,^[b] Tomoo Katsura,^[b] and Ralf Riedel^(b)

Re₂N₂(N)₂ is produced and quenched in DAC

Produced in larger quantity in LVP

https://doi.org/10.1038/s41467-019-10995-3 OPEN

High-pressure synthesis of ultraincompressible hard rhenium nitride pernitride $Re_2(N_2)(N)_2$ stable at ambient conditions

Maxim Bykovo¹, Stella Chariton¹, Hongzhan Feio¹, Timofey Fedotenko², Georgios Aprilis², Alena V. Ponomareva³, Ferenc Tasnádi⁴, Igor A. Abrikosov⁴, Benoit Merle⁶, ⁵, Patrick Feldner⁵, Sebastian Vogel⁶, Wolfgang Schnick⁶, Vitali B. Prakapenka⁷, Eran Greenberg⁶, ⁷, Michael Hanfland⁸, Anna Pakhomova⁶, ⁹, Hanns-Peter Liermann⁶, Tornoo Katsura¹, Natalia Dubrovinskaia⁶ ² & Leonid Dubrovinsky⁶

New, Expanded, Extreme Conditions Research at PETRA IV

Thank you for your attention!

