Summary of Beam Parameters and Other Requirements for LVPs at PETRA IV

Satellite workshop presentation

05-11-2020

DESY November meeting 2020

R. Farla

LVP beamline mission(s)

Applications in geo- and material sciences:

- Phase relations:
 - Transformation/nucleation
 - Melting curves (solidus/liquidus)
 - Equations of state
- Crystallography (w/ CAESAR or mono)
- Controlled rock deformation
- Melt viscosity measurements
- Structure of amorphous materials
- Complementary in situ techniques:
 - Ultrasonic interferometry
 - Acoustic Emissions testing
 - Electrical conductivity
- Synthesis of novel functional materials
 - Production feasibility (industry?)

P61B

- Ultra-high pressures (60±0.1 GPa)
- Large (100 mm³) samples
- Polymineralic rock

→ Study of grain boundary transport properties (conduction, diffusion, rheology)

Outlook of PETRA IV.

Conceptual Design of Storage Ring and Accelerator Complex

Paul P. Ewald Hall

Design lattice: **Hybrid 7 Bend Achromat (H7BA)** adopted from ESRF-EBS

> On-Axis Injection using fast kickers

 Optimized insertion devices in long straight sections

Beamlines at PETRA IV

...and the LVP beamline

More beamlines can be accommodated at P IV, than at PIII

- PETRA IV takes 2 years to build
 - Phase 1 beamlines (at launch) will be politically decided, incl. flagship beamlines.
 - Phase 2 beamlines (+1 yrs)
 - Phase 3 beamlines (+2 yrs?), the remainder.
- Flagship beamlines' dedicated to coherence methods or experiments requiring exceptional brilliance/timing
 - Coherent Bragg-Diffraction Imaging (CDI)
 - Ptychography
 - Bunch Timing with high flux
- **BM/superbend in P. P. Ewald hall** Much less flux than now at P61B, particularly at higher energies (> 50 keV)

Some key questions:

How long should the next LVP beamline be?

Should the new LVP beamline have more than 1 EH?

Calculations

Overview

- 1. Photon flux
 - U18, 5m and 10m
 - Tuning curves
- 2. Beam size and distance
- 3. Expanding & focusing beams
- 4. Beam power

Photon flux – Brightness Mode

Calculations of photon flux at 150 m from the source in a 1 x 1 mm² aperture

PETRA IV parameters:

- Electron energy: 6 GeV

-

- Average current:
 200 mA (brightness),
 80 mA (timing)
 - Emittance: < 20 pm rad (horz), < 4 pm rad (vert)
- Number of bunches:
 1600 (brightness),
 80 (timing)

Photon flux – Timing Mode

Calculations of photon flux at 150 m from the source in a 1 x 1 mm² aperture

PETRA IV parameters:

- Electron energy: 6 GeV
- Average current:
 200 mA (brightness),
 80 mA (timing)
- Emittance:
 - < 50 pm rad (horz),
 - < 10 pm rad (vert)
- Number of bunches:
 1600 (brightness),
 80 (timing)

Photon flux – '5 m' undulator U18

Calculations of photon flux at 150 m from the source in a 1 x 1 mm² aperture

PETRA IV

- Brightness Mode
 (200 mA 1600 bunch)
- Timing Mode (80 mA 80 bunch).
 - By tuning the undulator strength parameter, *K* the peak flux curve is obtained for each harmonic.

Note: This parameter can only be one value at a time, hence not all of this radiation is available at the same time!

IV. Beam characteristics for the instruments (LVP)

Energy resolution on a harmonic ('pink beam')

The energy resolution on a harmonic may not be quite as satisfactory (using 'pink beam' techniques).

Bent double-xl Laue monochromator, optimized for high throughput, will improve $\Delta E/E$ to ~10⁻³

Bigger is better? Problem of low divergence at PETRA IV

Due to the small source size and low divergence in the beam, *uniform beam size* is small even at large distances.

- Beam size is approx. 0.9 x 0.9 mm² at 150 m.
- Beam size is approx. 1.2 x 1.2 mm² at 200m.

Beam size needs to be expanded another way! (A few beamlines can be over > 200 m long at PETRA IV)

Understanding Compound Refractive Lenses (CRLs)

- Parabolic lenses are the most used X-ray lenses in CRL and always present a very good approximation to geometric focusing and reduce the geometrical aberrations.
- To overcome the weak refraction of a single element, several X-ray lenses are stacked.
 Focal distance:

$$f_{\text{thin CRL}} = \frac{R_{x,y}}{2N\delta},$$

• Aperture

$$A_{x,y} = 2\sqrt{(L - \mathbf{t}_{\text{wall}})R_{x,y}},$$

E.g. if we want $A_{xy} = 0.5$ mm beam, and $R_{x,y} = 20$ µm, lenslet thickness should be 3.1 mm each!

Understanding Compound Refractive Lenses (CRLs)

Expanding beam using Si Compound Refractive Lenses (CRLs) for imaging

Beam expander CRLs

Focusing beam using Si Compound Refractive Lenses (CRLs) for XRD, or X-ray tomography

DESY. | Status & development of the LVP beamline | R. FARLA, 30-01-2020

Focusing beam using Si Compound Refractive Lenses (CRLs) for XRD, or X-ray tomography

DESY. | Status & development of the LVP beamline | R. FARLA, 30-01-2020

Power

Calculations of undulator power at beamline U61 (136 m from the source)

Power density for all harmonics at a distance > 136 m

Considering low keV heat load filters, a monochromator, CRLs, the high-flux monochromatic beam very low power.

Little chance of heating the sample with a high flux beam at PETRA IV.

Example PETRA IV beamline for LVPs

Example PETRA IV beamline for LVPs

Concept LVP beamline for PETRA IV

165 m

Example PETRA IV beamline for LVPs

Concept LVP beamline for PETRA IV

AD-XRD at PETRA IV

AD-XRD environment. Detectors.

Summary for X-ray techniques to reach the science goals

Planned used techniques (green = full support, gold = needs more development)

X-ray diffraction techniques

- AD-XRD for
 powder / single crystal
- Scattering on amorphous and liquid materials
- ED-XRD by scanning undulator harmonics
- Other?

X-ray Imaging Techniques

- Radiography (absorption contrast)
- Phase contrast imaging
- Time-resolved 3-D micro-tomography
- Near-field and far-field High-Energy Diffraction Microscopy (HEDM)
- Coherent Bragg-Diffraction Imaging (CDI)
- Scanning transmission X-ray microscopy
- Other (?)

What should we aim for at a high P & T LVP instrument(s)?

- High-flux, high-energy (monochromatic) X-rays: 30 100 keV using bent crystal Laue Mono.
- Fast detection, high pixel resolution: state-of-the-art CdTe detector(s)
- Option for scanning of harmonics to perform ED-XRD (30-120 keV)
- Ample space for complementary *in situ* sample environments / measurement systems

General purpose XRD/imaging set up for low to ultra-HP experiments in 6-ram LVP

 \rightarrow fast switching between 'diffraction mode' and 'imaging mode', axial deformation mode, studies on solids

Specialized XRD/imaging/microtomography for low to moderate P and T experiments in PE-press(es)
 → fast switching between 'diffraction mode' and 'imaging mode', torsion deformation mode, studies on liquids

Spectroscopy

• Any?

Outlook

- Next few weeks, last chance to review and comment on SIPs!!
- All participants in the LVP@P4 workgroup please indicate which proposals you will support and sign.
 - > Email Dr. Melanie Sieber your preference!
- Finalized proposals
 - > To be circulated on various mailing lists to seek out more signatures (?)
 - > To be submitted before the deadline (1 Dec 2020) by Dr. Sieber

Thank You for Your Attention!

Power

BL Char.

Calculations of undulator power (density) at beamline U61 (166 m from the source)

Future outlook

Power

BL Char.

Calculations of undulator power (density) at beamline U61 (166 m from the source)

Outlook of PETRA IV.

Future outlook

Future outlook

Outlook of PETRA IV.

Work packages

WP 3.08:		
Beamline and Experimen	nt Design	
Topics:		
Energy E	arth and	
Life and Health E	nvironment	
Transport and Ir Technology	ndustrial Innovation	
Nano and Quantum Materials for Information Technology		
Energy	Earth and Environment	
Life and	Nano and Quantum Materials	
пеация	Transportation and	
Information	reenhology	
Technology		

6 Workshops planned from September 2020!

Beamline proposals for portfolios to guide TDR must be ready in 6 months!

- → First report due in May 2020!
- \rightarrow 1st meeting in February with P02.2
- What design LVP beamline do we want and need?
- Core driver experiment for U61?
- An independent beamline (100%), more than 1 beamline?

Contact

DESY. Deutsches	Robe
Elektronen-Synchrotron	FS-P
	rober

www.desy.de

Robert Farla FS-PETRA-D robert.farla@desy.de Tel: 4470