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LVP beamline mission(s)

- Phase relations:

* Transformation/nucleation

* Melting curves
(solidus/liquidus)
» Equations of state

- Crystallography (w/ CAESAR or mono)
- Controlled rock deformation

- Melt viscosity measurements

- Structure of amorphous

materials

Complementary in situ techniques:
 Ultrasonic interferometry
» Acoustic Emissions testing
* Electrical conductivity

Synthesis of novel functional materials
» Production feasibility (industry?)
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Outlook of PETRA IV

Design lattice:
Hybrid 7 Bend Achromat (H7BA)
adopted from ESRF-EBS
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On-Axis Injection using fast kickers
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Beamlines at PETRA IV

More beamlines can be accommodated
at P IV, than at PIlI

« PETRA IV takes 2 years to build
 Phase 1 beamlines (at launch) will be
politically decided, incl. flagship beamlines.
 Phase 2 beamlines (+1 yrs)
* Phase 3 beamlines (+2 yrs?), the
remainder.
* ‘Flagship beamlines’ dedicated to
coherence methods or experiments

requiring exceptional brilliance/timing
« Coherent Bragg-Diffraction Imaging (CDI)
* Ptychography
* Bunch Timing with high flux
« BM/superbend in P. P. Ewald hall
Much less flux than now at P61B, particularly at
higher energies (> 50 keV)

> 200 m beamline

u3e u3?

PETRA IV Hall West

Max von Laue Hall
ot Ada Yonath Hall

o8 E—um

uz22
U2z

Paul Peter Ewald Hall

N we| Flagship beamline
wy 3PW

beamline(s)

Some key questions:
How long should the next LVP beamline be?

Should the new LVP beamline have more than 1 EH?
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Calculations

1. Photon flux
 U18, 5m and 10m
« Tuning curves
2. Beam size and distance
3. Expanding & focusing
beams
4. Beam power
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Photon flux — Brightness Mode

Calculations of photon flux at 150 m from the source in a 1 x 1 mm? aperture
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Photon flux — Timing Mode

Calculations of photon flux at 150 m from the source in a 1 x 1 mm? aperture
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Photon flux = ‘5 m’ undulator U18

Calculations of photon flux at 150 m from the source in a1l x 1 mm? aperture
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PETRAIV

Brightness Mode

(200 mA — 1600 bunch)
Timing Mode (80 mA —
80 bunch).

By tuning the undulator
strength parameter, K
the peak flux curve is
obtained for each
harmonic.

Note: This parameter can only
be one value at a time, hence
not all of this radiation is
available at the same time!
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V. Beam characteristics for the instruments (LVP)
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The energy resolution
on a harmonic may
not be quite as
satisfactory (using
‘pink beam’
techniques).

Bent double-x| Laue
monochromator,
optimized for high
throughput, will
improve AE/E to ~10-3
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Beam size

Bigger is better? Problem of low divergence at PETRA IV
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350

Due to the small source size and low
divergence in the beam, uniform beam
size is small even at large distances.

« Beam size is approx. 0.9 x 0.9 mm?
at 150 m.

« Beam size is approx. 1.2 x 1.2 mm?
at 200m.

Beam size needs to be expanded
another way! (A few beamlines can
be over > 200 m long at PETRA V)
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Beam size

Understanding Compound Refractive Lenses (CRLS)

« Parabolic lenses are the most used X-ray
lenses in CRL and always present a very
good approximation to geometric focusing
and reduce the geometrical aberrations.

* To overcome the weak refraction of a single
element, several X-ray lenses are stacked.
Focal distance:

omew = 2 LI

d Ap e rtu re equivalent to:

xy—2\/ wall xy: ><

(a) single lens equivalent

S TS TS AT = 2 von 2 =0 mm beam.and 5, =20

um, lenslet thickness should be 3.1 mm each!

Le
‘ ok Celestre etal.
(b) N-stacked lenses to form a CRL ESRF 2019
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Beam size

Understanding Compound Refractive Lenses (CRLS)

_  Parabolic lenses are the most used X-ray
1] Example of CRLs for nano-focusing avery
ocusing
A a ‘ .
| @ R tions.
_______ f a single
stacked.
(a)
squivalent to:
Figure 7.6.: (a) Rotationally parabolic refractive X-ray lens. (b) Parabolic cylinder lenses for 1D
- : : . (-
_focusmg. nano-focusing refractive X-ray lenses (NFLs) maq’e of silicon.
‘ E EED Ax }y — z’ \/ (L — twall )Kx ’_y b (a) single lens equivalent
) o ) Celestre et al.
(b) N-stacked lenses to form a CRL ESRE 2019
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Beam size

Beam expander CRLs

120 7 CRLs location: 50 m (after Laue Monochromator) Normal beam

2000
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1000
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. . e 2
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Beam size

Focusing beam using Si Compound Refractive Lenses (CRLs) for XRD, or X-ray tomography

Sub-micron focus for PE-tomography press using CRLs

0+ Incident slits: 0.4x 0.4 mmZ2 @ 139 m
CRLs location: 139.5 m
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size
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. . s e 2 o~
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Need different number of CRLs for each energy!
DESY. | Status & development of the LVP beamline | R. FARLA, 30-01-2020 Page 14




Beam size

Focusing beam using Si Compound Refractive Lenses (CRLs) for XRD, or X-ray tomography

Micron-focus for 6-ram LVP for XRD using CRLs

XZ

J 1 Indident slits: 0.4 x0.4 mm? @ 149 m
CRLs location: 149.5 m

Focused beam
size
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50
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0
30 40 50 60 70 80 90 100 110

Energy (keV)

Need different number of CRLs for each energy!
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Power

Calculations of undulator power at beamline U61 (136 m from the source)
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Integrated power per harmonic:

3.1
[ ]

PETRA Il
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Power density for all harmonics
at a distance > 136 m

Considering low keV heat load
filters, a monochromator, CRLsS,
the high-flux monochromatic beam
very low power.

Little chance of heating

the sample with a high
flux beam at PETRA IV.
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Example PETRA IV beamline for LVPs

Concept LVP beamline for PETRA IV

50 m 45 m
@ @ @

Optics hutch 1
shutter

CRLs Bend crystal slits 4m long U18 cryo-cooled

slits
Laue mono III I I

DE/E ~ 103 heatload filtersy DE/E ~ 1072

shutter
beam expander energy selector ~ P&aM position  scannable for
(different CRLs, for (30 - 120 keV) monitor ED-XRD
different energies!)

S
o |E
3
~~0.H mm
e to sample 1 distance
®
130 m
suuice to sample 2 distance
@ @ ®
165 m 150 m
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Example PETRA IV beamline for LVPs

Concept LVP beamline for PETRA IV
50 m 45 m

Exp. hutch 1: time-resolved —— o @ ®
micro-tomography LVP /
coherent X-ray applications  Qptics hutch 2 Optics hutch 1
X-ray_microscope hutt b C P - shutter
- shutter -bounce . RLs end crysta i
- S|ItSCRLSS|ItS high-res mono slits Laue mgno slits 4m long U18 cryo-cooled
G —=
m 2320 -
Shmer souer | 3 shutter & DE/E~ 107 heatload filters/ DE/E ~ 107
lit: it
>d CdTe e Pans-Edmburgh bp * [imited to beam expander energy selector ~ P€aM position  scannable for
[detector  -type press, RoToPEc | monitor ~55 ke, (different CRLs, for (30 - 120 keV) manitor ED-XRD
specialised detector for DE/E ~ 104 different energies!)
coherent diffr. imaging é
Iw
beam focus g
tolx1um? —
~0.3 mm
Source to sample 1 distance
® @
130 m
Source to sample 2 distance
@ @ @
165 m 150 m
Page 18
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Example PETRA IV beamline for LVPs

Concept LVP beamline for PETRA IV

50 m 45 m

Exp. hutch 2: Routine X-ray diffraction Exp. hutch 1: time-resolved S ® @ ®
/imaging & offline experiments micro-tomography LVP /
. coherent X-ray applications  Qptics hutch 2 Optics hutch 1
X-ray microscope hutter
X shu
Yo X-ray_microscope ] shutter  4-bounce ) CRLs Bend crystal slits
soller slits i " “or %. slitsCRLsints ' SIItSCRLssluts high-res mono slits Laue mono 4m long U18 cryo-cooled
] I o l o on——
beam N 4 t <hutter | Soer : ¢ t shutter t DE/E ~ 107 heatload filters/ DE/E ~ 107
“t g s
stop _ ' >d CdTe  e.g. Paris-Edinburgh bp* limited to beam expander energy selector bean.rJlE position  scannable for
* large radius ' ldetector -type press, RoToPEc monitor ~55 kev, (different CRLs, for (30 - 120 keV) monitor ED-XRD
CdTe 2d detector/ 6-ram VP beam focus||specialised detector for DE/E ~ 104 different energies!)
2x Ge detectors to 50 x 50 um?]|coherent diffr. imaging é‘

: 0 |
Detection system beam focus g
(10 m in length) tolx1um? —

~0.3 mm
Source to sample 1 distance
~2.0 mm ~0.9 mm . 130 m .
w/ expander w/h expander .
Source to sample 2 distance
@ @ @

165 m 150 m
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AD-XRD at PETRA IV

AD-XRD environment. Detectors.

LAMBDA sensors: Photoelectric absorption

' Deviatoric stress area detector

(axisymmetric) 100% | | .

~
0° < T 8%
, v 2
. 2| %
‘.':90""_5 5 —Silicon (300pm)
] % T 40% GaAs (500um)
s 9 —CdTe (1000um)
'.<t; & 20% \

X-ray energy (keV)

o
xR

Debye-Scherrer diffraction cone
2emaw = 1OD

Option for rotating linear CdTe detector
(photon-counting) on goniometer and
stages and/or integrating 2d detectors E.q. for detector placement

(one or multiple panels) 3400 mm from sample.

DESY. Page 20

» Rotation not necessary for MAG-8,
isotropic compression experiments.




Summary for X-ray techniques to reach the science goals

Planned used techniques (green = full support, gold = needs more development)

X-ray diffraction techniques X-ray Imaging Techniques Spectroscopy
« AD-XRD for « Radiography (absorption contrast) * Any?
powder / single crystal  Phase contrast imaging
« Scattering on amorphous and * Time-resolved 3-D micro-tomography
liquid materials * Near-field and far-field High-Energy
« ED-XRD by scanning undulator Diffraction Microscopy (HEDM)
harmonics  Coherent Bragg-Diffraction Imaging (CDI)
» Other? e Scanning transmission X-ray microscopy

Other (?)

What should we aim for at a high P & T LVP instrument(s)?

* High-flux, high-energy (monochromatic) X-rays: 30 — 100 keV using bent crystal Laue Mono.
» Fast detection, high pixel resolution: state-of-the-art CdTe detector(s)

« Option for scanning of harmonics to perform ED-XRD (30-120 keV)

 Ample space for complementary in situ sample environments / measurement systems

General purpose XRD/imaging set up for low to ultra-HP experiments in 6-ram LVP
—> fast switching between ‘diffraction mode’ and ‘imaging mode’, axial deformation mode, studies on solids

Specialized XRD/imaging/microtomography for low to moderate P and T experiments in PE-press(es)
-> fast switching between ‘diffraction mode’ and ‘imaging mode’, torsion deformation mode, studies on liquids

DESY.
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Outlook

« Next few weeks, last chance to review and comment on SIPs!!

« All participants in the LVP@P4 workgroup please indicate which proposals

you will support and sign.
» Email Dr. Melanie Sieber your preference!

* Finalized proposals
» To be circulated on various mailing lists to seek out more signatures (?)

» To be submitted before the deadline (1 Dec 2020) by Dr. Sieber

Thank You for Your Attention!
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DESY. | X-ray diffraction studies using the LVP | Robert Farla, 27-05-2019 Page 23



Intro @il ( brtechninues, ] (. Commissioning. ] (. Research, ] (L Futureoutiook

Summary, |

Power

Calculations of undulator power (density) at beamline U61 (166 m from the source)
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Il

1.2

1.0

o
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Power (W)
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N | T

—2.6 min 1x1 mm?2
—2.6min1x1 mm2-1FT
—166 min 1x1 mm2

—166 min 1x1 mm2 - 1FT
Total cumulative power (166m):
No filter: ~13.7 W

1 filter: ~8.2 W

Total cumulative power (source):
No filter: ~11,300 W
1 filter: ~4,600 W

0 50 100

150 200

Energy (keV)
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W [mm]

Code SRW; Power density [W/mm~™2]

H [mm]

13.82514

13.80162
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Summary ]

Power

Calculations of undulator power (density) at beamline U61 (166 m from the source)

Integrated power per harmonic:

- . 40
e 325 —166 m in 1x1 mm2 . e No filter
o —166 min 1x1 mm2 - 1FT 35 J° o 1FT
L2~ € 30 4 e Power (No filter)
2'61 . E ......... Power (1 FT)
o Total cumulative power (166m): = 25 -
1.0 No filter: ~13.7 W =~
e 220 - ..
1 filter: ~8.2 W 7z
Sos - 1.87 S 15 - ; e
e ° o e,
[ . e T g,
: _ E 10 . 136,12.3 . ...
e 06 - 124 c | 166,82 o
° 196,5.9
1 0 T T T T
0.4 -
; 0'.8 100 150 200
_ 0.51 Distance to source (m)
0.2 - ® 031
o 019 .,
] 11 0.07 0.06 :
R I I A R R T T I S S Total power density of all
0 . 100 150 500 harmonics as function of distance
Energy (keV)
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fosearen [ Future outlook | Summary

(mwo_ ] (. BLChar, ] ([ HRtechninues. ] ([ Commissioning. | |

Outlook of PETRA IV.

Task ahead: From Idea to Reality
01'2025: Start construction work

01'2023: Kickoff ,
PETRA IV End PETRA Il operation

Targeted submission of

roadmap proposal project 01'2027: Start up
PETRA IV
Paul P. Ewald
l_ Ha | LEAPS, PETRA IV PETRA IV
T J HGF-FIS project phase operation

.

o & A
S ,

European XFEL ‘,_e‘l_:l__;-.; : A
P )
Gioen gman Ada Yonath e
: "!\-;.,_ Lli/? PETRA IV 122022: TDR
N ' TDR Phase
12°2019: CDR

PETRA IV
CDR Phase

DESY. | Status & development of the LVP beamline | R. FARLA, 30-01-2020 Page 26



| Future outiook |

Outlook of PETRA IV.

Work packages

Work Package Group 3:

Photon Science Experiments F S

WP 3.01:

WP 3.08:

X-Ray Sources

Beamline and Experiment Design

WP 3.08:

Beamline and Experiment Design

6 Workshops planned
from September 2020!

Topics: Topics:
Enerey Energy Earth and
Front-End Optics — | | Life and Health Environment Life and Health Environment B I . | f t f I .
S Transport and i : eamiine proposails 10r portrolos
T:::i::l,og:n Industrial Innovation Transport and Industrial Innovation p p p

WP 3.03:

Ultraprecision

Nano and Quantum Materials
for Information Technology

Technology

Nano and Quantum Materials

to guide TDR must be ready

Mechanics | | for Information Technology | n 6 m 0 nth S |
Nano-Optics T uo1 uoz2
—> First report due in May 2020!
_aagement | Ish|p Beamline: rade Beamline: 9 1St meetl ng |n February W|th P02 . 2
and Analysis

WP 3.06:

Flagship Beamline: Upgrade Beamline:

Nano and Quatituhy’|
Materials

Techmcal U3l u22 t « What design LVP beamline

' do we want and need?

Smple T U4l | =mEeeemompwny © Core driver experiment for U617?

User Laboratories ,.‘lr{f.'ormatiOn “\Ted"éﬂosy ® An |ndependent beamllne (100%),
el uaz Technology : more than 1 beamline?
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Contact

DESY. Deutsches Robert Farla
Elektronen-Synchrotron FS-PETRA-D
robert.farla@desy.de

www.desy.de Tel: 4470



