Beamline P61B: Large Volume Press.

Deutsches Elektronen-Synchrotron DESY

A Research Centre of the Helmholtz Association

Research at High Pressure and Temperature

Robert Farla¹, Shrikant Bhat¹, Artem Chanyshev^{1,2}, Shuailing Ma^{1,3}, Stefan Sonntag¹, Takayuki Ishii², Tomoo Katsura²

¹Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany ²Bayerisches Geoinstitut, University of Bayreuth, Germany ³State Key Laboratory of Superhard Materials, Jilin University, Changchun, China

Mission statement

To probe the structure and properties of materials in situ at high pressures and temperatures in a Large Volume Press (LVP) using X-ray diffraction and imaging techniques, as well as ultrasonic and electrical resistivity methods.

Applications in geo- and materials sciences:

- Phase relations:
 - Transformation/nucleation

LVP & detector specifications

mavo press LPQ6-1500-100	6 indep. controlled rams		
Maximum load	15 MN – 5 MN/axis		
Ram position control	1 µm step – 100 mm		
Oil pressure control	0.5 bar – 620 bar/ram		
Anisotropic compression	Axial symmetric, triaxial		
5-axis stage	x,y1,y2,z (± 100 mm), rotation: ± 11.5°		
Combined weight	ca. 45 ton		
Ge-detector (2x) – ED XRD	Mirion (Canberra)		
Collimator slit (mm)	0.03, 0.05, 0.1, 0.2		
Receiving slits (mm)	0.05, 0.1, 0.2, 0.5, 1.0, 2.0		
Horz. detector positions	1xGe: min 4° - max 20° 2xGe: min 5° - max 10°		
Horz. & vert. positions	Ge _{vert} : min 7.5° - max 23° Ge _{horz} : min 6.5° - max 10°		

Beamline P61 specifications

Source	10x wigglers		
Length (m)	10 x 4		
Period length (mm)	200		
# periods	10 x 19		
Peak field B0(T)	1.52		
Def. parameter K	28.4		
Max. power (kW)	10 x 21		
Usable energy range P61B	30 – 160 keV (Ge-SSD)		
Power density P61B	16 W/mm ²		
Filtered power P61B	12 – 10 W/mm ²		
Peak flux density P61B @ 50 keV	10 ¹² ph/s/mm²/0.1% b.w.		
Max. beam size P61B	2.2 mm (h) x 1.7 mm (v)		
Min. beam size P61B	0.03 mm x 0.03 mm		

- Melting curves (solidus/liquidus)
- Equations of state
- Crystallography
- Controlled rock deformation
- Melt viscosity measurements
- Structure of amorphous materials
- Ultra-high pressure (60+ GPa) & temperature (3000 K)

Additional methods:

- Ultrasonic wave speed measurements
- Acoustic Emissions testing
- Electrical conductivity (coming up)

High-pressure in situ measurement techniques

Versatile compression modes

Kawai-type (8-6): Extreme pressures, reliable geometry

Cubic (6-6): Large X-ray window, anisotropic compression

Energy dispersive X-ray diffraction (ED XRD)

Diffracted

P < 15 GPa

Deformation

Assemblies and pressure generation

Complementary in situ techniques

Ultrasonic interferometry

Measurement of two-way travel time of ultrasonic waves in a sample at high P and T using a LiNbO₃ sensor on the back of an anvil, which transmits a pulse and receives an echo. Simultaneous imaging (radiography) provides sample length. Wave speed at given P,T is calculated for determination of elastic moduli.

Acoustic Emissions testing

Measurement of *in situ* cracking of specimens under deviatoric stress at high P and T. Useful for the understanding of intermediate- and deep-focus earth quake generation and hostrock failure e.g. in empty reservoirs for CO₂ sequestration. In 6-6 mode, each anvil is fitted with an acoustic sensor for AE detection for 3d location & moment tensor analysis).

Beamline research highlights

I. Discovery of the first tin oxynitride, Sn₂N₂O (SNO)

SNO was synthesized at 20 GPa and 1200 – 1500°C in the large volume press at P61B. It has a Rh_2S_3 -type crystal structure with space group Pbcn. All Sn atoms are in six-fold coordination, in contrast to Si in silicon oxynitride (Si_2N_2O) and Ge in the isostructural germanium oxynitride (Ge_2N_2O), which appear in four-fold coordination. The isothermal bulk modulus was determined as $B_0 = 193(5)$ GPa using *in-situ* synchrotron X-ray diffraction in a diamond anvil cell. The structure model is supported by DFT calculations.

II. Depressed 660-km discontinuity caused by akimotoite-bridgmanite transition

III. Controlled in situ rock deformation

	8/5 assy	1 hr at 12.5 µm/mir	Marble	ALL NOT
Absorption contrast imaging			sample 1.5 mm length	

Beam line and hutch layout

Future perspectives

Enhance capabilities at the beamline for crystallography and rock deformation studies using angledispersive XRD. This requires a monochromatic beam at selectable very high energies (> 60 to 100 keV).

Crystal structure of SNO. a) Unit cell, showing the distorted octahedral coordination of Sn. b) View along the a-axis, showing grey and yellow coloured octahedra sharing faces (indicated as red triangles).

using a double objective microscope (5x, 10x magnification) Deviatoric stress Radiography: strain history

Required Instrumentation:

- Double-xl Laue monochromator
- Large radius flat panel detector.

Studies of stability and dehydration reactions of 2. hydrous minerals at high pressure, simulating onset of melting and/or seismicity for better understanding of the origin of volcanism and earthquakes, respectively. **Required Instrumentation:**

- Impedance analyzer for electrical conductivity.

Expansion of the beamline with a second LVP 3 (Paris Edinburgh-type) for e.g. tomography.

HELMHOLTZ **RESEARCH FOR GRAND CHALLENGES**

Pt discs

pistons

Boron

epoxy

X-rays

~45% strain

window

 Al_2O_3