P65 half a year before the first photons on the Cu-foil.

E. Welter, M. Herrmann, R. Chernikov

PETRA III extension: Beamline P65

Beamline specifications:

- Millimetre sized beam spot on sample
- No focusing mirrors
- Short 11 periods undulator source
- Photon flux > 10^{11} s^{-1}
- Energy range: 4 44 keV
- Easy to handle standard operating procedures for inexperienced users
- Complementary to P64 (see poster by W. Caliebe et al.)
- Large experimental (2.5 * 1.2 m²) table with standard EXAFS set-up
- Ample space for specialised in-situ set-ups
- Infrastructure for problematic gases

- Temperature stabilised to +/- 1° C
- Detectors: Ionisation chambers, PIPS, energydispersive semi-conductor detectors
- Sample preparation lab shared with beamline P64.
- Fume hut, glove box, lab benches and equipment for sample preparation like an analytical balance and pellet press

CAD-drawing of PEX beamline P65, (1) experimental hutch, (2) control hutch, (3) Sample preparation lab (shared with P64)

Timeline

	2013		2014													2015								
	12	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4	5	6	7	8	9		
PETRA III shutdown																								
Modification ring tunnel																								
Installation of machine																								
Machine commissioning																								
Civil engineering hall north							İ																	
Inst. of tech. infrastructure																								
Set-up optics hutch																								
Set-up optics																								
Set-up exp. Hutch																								
Installation of front end																								
Installation of undulator																								
Set-up experiment																								
Beamline commisioning																								
First user activities*																								
* NOT normal user operation!																								

In short:

- Start of regular user operation February 2016

- Schedule determined by experimental and optics hutch construction
- Beamline design phase finished
- Mirrors and undulator delivered
- Double crystal monochromator assembled ,underwent final successful vacuum test in February 2015

Beamline set-up

Main parameter:

- Source: Short 11 periods undulator

- 2 plane mirrors for higher harmonics rejection and power load reduction
- Water cooled C-type double crystal monochromator (DCM)

Source:

- Period length: 32.8 mm
- Number of periods: 11
- Minimum magnetic gap: 9.5 mm
- K_{max}: 2.7 (Magnetic gap 10.05 mm)
- Undulator gap and DCM will be scanned in a continuous mode, the anticipated times per scan are between 1 and 5 min.
- DCM and undulator gap scans will be synchronised
- Synchronised gap scans already successfully tested at beamline
 P06, deviation between undulator and DCM energy < 2 eV at 9 keV

Overlap between 1st and 3rd harmonic in the scan region of Mn, Fe and Co EXAFS

Double crystal monochromator:

- Water cooled
- Si 111 and 311 crystal pairs (2.4 44 keV)
- Maximum acceptable power load: 2 W / mm²
- Power load limits tested during measurements in September/October 2012 at DORIS III beamline BW1
- Renishaw encoder on the Bragg-axis

Rest-gas analysis of the complete DCM after assembly

- Short distance between DCM and sample for improved stability

<image>

Assembly of the DCM in the clean room

Mirrors:

2 plane mirrors

- 3 optical surfaces each (Si, Rh, Pt)
- Variable angle of incidence, 1.5 4.5 mrad for
- effective higher harmonics suppression
- First mirror (water cooled) acts as low pass filter to reduce power load of 1st DCM crystal

Scan of the Huber 420 goniometer, positions from the internal (blue) and external (red) encoder.

Renishaw encoder mounted outside of the vaccuum tank