The High Energy Materials Science Beamline (HEMS) at PETRA III

Norbert Schell, Andrew King, Felix Beckmann, Hans-Ulrich Ruhnau, René Kirchhof, Rüdiger Kiehn, Martin Müller, and Andreas Schreyer

Institute of Materials Research, GKSS Research Center Geesthacht, Max-Planck-Str. 1, 21502 Geesthacht, GERMANY

High Energy Experiments at PETRA III

Refurbished for operation with 6 GeV @ 100 mA, the storage ring PETRA III on the DESY site in Hamburg will be one of the most brilliant 3rd generation x-ray sources with first users already in autumn 2009. PETRA III: A Low Emittance Synchrotron Radiation Source, Teo Design Report, ed. K. Balewski et al., Hamburg, DESY, 2004

Comparison of PETRA III with 2nd and 3rd generation synchrotron radiation and FEL sources.

rial photo of PETRA site

10³ 10⁴ Energy [eV]

The High Energy Materials Science Beamline HEMS is fully tunable in the range 30-250 keV and optimized for sub-um focusing with Compound Refractive Lenses and Kirkpatrick-Baez ML mirrors. Design, construction, operation and main funding is the responsibility of GKSS. 2/3 of the beamtime will be dedicated to materials research, 1/3 to "general physics" experiments covered by DESY.

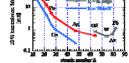
→ Fundamental research encompassing metallurgy, physics, chemistry, biology with investigations of the relation between macroscopic and micro-structural properties of polycrystalline materials, grain-graininteractions, re-crystallisation processes, and the development of new & smart materials or processes

→ Applied research for manufacturing process optimisation, complex and highly dynamic in-situ studies of micro-structural transformations, e.g. during friction stir welding, easy accommodation of large and heavy user provided equipment up to 1 t.

→ Targeting of the industrial user community based on well established techniques with standardised evaluation and "full service" measurements for strain mapping, texture determination and tomography.

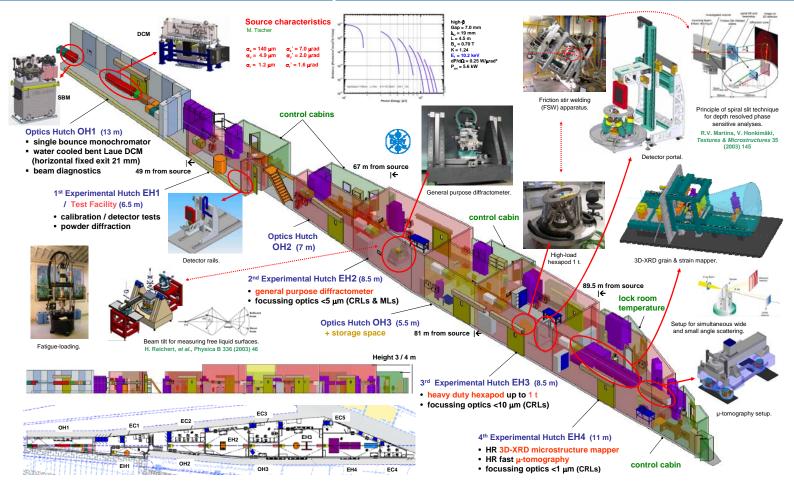
Properties of High Energy X-Rays Kev

High penetration depth


non-destructively bulk properties measurable → deeply buried structures accessible

Large Ewald Sphere

ightarrow lines and planes in reciprocal space can be imaged → small Bragg angles (typically 5° to 15°), monitoring of complete diffraction rings with area detectors possible


Extinction and multiple Bragg scattering negligible

- · Focussing to spot sizes in nm range possible
 - → combination of high penetration depth and high flux
 - → very short data acquisition times possible (<1 s)</p>
 - → non-destructive observation of highly dynamic processes → high spatial resolution narrowing the gap to electron microscopy

10% transmission thicknesses of technologically relevant metals for different x-ray energies.

Beamline Layout and Instrumentation

Contact: Dr. Norbert Schell, Tel: +49 (0)40-8998-3637, E-mail: norbert.schell@gkss.de, Internet: http://www.gkss.de/