A ‘Focus Finder’ for
 Micro Focus and Beam Characterization.

Frank Scholz, Ivan Shevchuk, Kai Bagschik, Jens Buck, Jörn Seltmann, Florian Trinter, and Moritz Hoesch

Motivation

The exact position of the focus is crucial in an experimental setup, especially at modern beamlines with small foci.
Because of the inaccuracy in manufacturing, measuring, and assembling, it is hard to predict the exact position and size of the actual focus. Also the use of bendable mirrors makes the characterization of the beam necessary.
The purpose of the Focus Finder is to find and characterize the focal spot of the P04 XUV beamline at PETRA III but also of any speed up the alignment of a beamline and its optical components. beam shape. A YAG screen is used to make the X-ray radiation visible for a high-resolution camera. Mounted on a precision slide, images of the current beam shape are taken and processed.
With the implemented fiducial marks, one is able to measure the absolute position of the focus. The measurements can take
place under UHV conditions. place under UHV conditions.

Characteristics

- Beckhoff motor control
- Beckhoff motor control
- Schneeberger rails with
(1 um resolution)
Minimum focus size $\sim 2 \mu \mathrm{~m} \times 2 \mu \mathrm{~m}$ (at present) Target focus size $<1 \mu \mathrm{~m} \times 1 \mu \mathrm{~m}$
- Focus point longitudinal tolerance $\pm 1 \mu \mathrm{~m}$

Lateral tolerance $5 \mu \mathrm{~m} / 1000 \mathrm{~mm}$

- Fiducial marks for absolute positioning
- Lifetime of bellow 100.000 cycles

Scan speed $30 \mathrm{~mm} / \mathrm{s}$

- Ratio ball screw drive $10 \mathrm{~mm} / 1$ revolution
- High reproducibility $\ll 10 \mu \mathrm{~m}$

Overall weight $\sim 400 \mathrm{~kg}$ (250 kg granite block)

- Overall length 1600 mm

Overall width 960 mm
Beam hight adjustable $\sim 1300-1500 \mathrm{~mm}$

Results

The last measurement at the P04 beamline in March 2018 gave us the present status of the focus at the P04 Beamline. As you can see (fig. a) we measured a vertical
horizontal spot size of about $12 \mu \mathrm{~m}$.
To find the focus the beam size is measured along the longitudinal axis. (fig. b). After fitting an polynomial function into the measured values we calculate the minimum position (830 mm) for the vertical and horizontal foci after the user valve.
With these results we can show that the 'Focus Finder' is a useful and versatile tool, which helps to characterize the beamline conditions and to have the beamline optimal

(fig. b) The measured spot size (FWHM) along the beam axis.
in this scan 1270 images where taken in approximately 30 seco

Outlook
Even after three successful measurement campaigns at PETRA III and one Diamond Light Source (2015) there is stll problem and need to be minimized. Th camera mounting does not have sufficient stability and tends to vibrate. Furthermore we assume that the bellow guide is introducing vibrations into the system because of a stick-slip effect.
There is the possibility to have a highe magnification of the YAG screen with th smaller field of view.

