Progress at the Variable Polarization XUV Beamline at PETRA III.

Sergey Babenkov, Lars Dammann, Leif Glaser, Gregor Hartmann, Sebastian Heisch, Frank Scholz, Jörn Seltmann, Ivan Shevchuk, and Jens Viefhaus (DESY, Hamburg, Germany)

P04 offers unique opportunities for research with soft X-rays at PETRA III, providing highest brilliance and variable polarization from 250 to 3000 eV using only the first harmonic of the undulator.

P04 properties and layout:

- > Exceptionally wide range of photon energies
 - \Rightarrow 1st harmonic only from 0.2 to 3 keV!
 - \Rightarrow Uncompromising circularly polarized SR
- > High stability, low emittance \Rightarrow diffraction limited
- > Large facility \Rightarrow space for dedicated experiments

P04 performance:

P04 endstations provided by user consortia (BMBF funding):

Research Fields at P04:

> Dilute gas phase targets

P04 progress during shutdown

During the shutdown several components have been improved, among them:

> Soft X-ray Diffraction

- > Magnetic Spectroscopy/Imaging
- > High-resolution Photoemission
- > Time-resolved Spectroscopy/Microscopy

Laser Setup for ps-time-resolved Studies

Photon-lon spectrometer at PETRA III (PIPE)

see S. Schippers *et al.*, JPB **47** (2014) 115602 and A. Müller *et al.*, PRL **114** (2015) 013002

XAS/XMCD Setup with mK-Cryostat

courtesy of Torben Beeck

Setup for Soft X-ray Holographic Imaging Angle-resolved Photoemission Setup (ASPHERE III) Universität Hamburg rotatable electron analyzer AGs Kipp/ Reinert AGs Oepen/Grübel Parameters (12/2013) = 10 meV (limited by temperature) chamber T = 20 K - 400 KP04 synchrotron radiation Analyzer rotation from -10° to 90°

Soft X-ray Diffractometer (SXD)

- > a new power slit system in front of the plane mirror/grating. This will better define the x-ray beam in order to minimize distortions of the x-rays impinging on the grating. (both for the first and second branch line)
- > a complete new software for the PM/PG-U allow to address only an "energy axis" instead of two axis of rotation for mirror and grating respectively. This enables fast and accurate "on-the-fly"-scanning (with up to 20 eV/s!).
- > new exit slit blades and an improved calibration of the camera which is used to measure the size of the exit slit ($<1\mu$ m precision).
- > installation of alignment lasers which can operate independently from the front end laser in order to ease alignment of setups even while the other branch is using x-rays.

P04 outlook

During 2015 several new components are forseen:

- > the missing horizontally focusing mirror for the experimental platform (before commencing user operation).
- > the complete second beamline branch line which is vital to ease the set up and simultaneously increase beamtime efficiency (final dates depend on optics).
- > a complete new development for the switching mirror which will then allow for true variable polarization including all linear polarized modes. This mirror will be internally ℓN_2 cooled due to high heat load. (final dates depend on optics).

Upgrades on the endstation side will include a sub-µm-focus at the new second branch line.

courtesy of Judith Bach / Robert Frömter

courtesy of Christian Schüßler-Langeheine

For this scheme an intermediate focus is re-focussed into a dedicated photoemission endstation (BMBF funding).

