Polyatomic systems at high x-ray intensity

Robin Santra

Center for Free-Electron Laser Science, DESY

Department of Physics, University of Hamburg

Department of Chemistry, University of Hamburg

DESY Summer Student Program 2019 August 8, 2019 Hamburg, Germany

Serial femtosecond crystallography using an x-ray free-electron laser (Henry Chapman *et al.*)

The parasite Trypanosoma brucei causes African sleeping sickness, which is lethal and infects 50,000 people a year.

Microcrystals of the enzyme Cathepsin B from the parasite, formed by in vivo crystallisation, were too small for synchrotron studies.

The structure shows the natural inhibition of the enzyme, giving clues for drug discovery.

Single-shot structure determination of biomolecules

Neutze et al., Nature 406, 752 (2000).

XMDYN

Zoltan Jurek

Sang-Kil Son

 \rightarrow ab-initio calculation of atomic parameters (subshell photoionization cross sections, electronic decay rates, x-ray scattering cross sections) for arbitrary electronic configurations \rightarrow uses XATOM

 \rightarrow description of electronic population dynamics via Monte Carlo

 \rightarrow classical molecular dynamics for nuclei and ionized electrons

> Atomic ions – experimental and volume integrated theoretical yields

B. F. Murphy *et al.*, Nature Commun. **5**, 4281 (2014).

UH

C₆₀ @ LCLS (Nora Berrah et al.)

B. F. Murphy *et al.*, Nature Commun. **5**, 4281 (2014).

Argon clusters @ SACLA (Kiyoshi Ueda et al.)

> Theoretical and experimental electron kinetic energy spectra,

T. Tachibana *et al.*, Scientific Reports **5**, 10977 (2015).

Argon clusters @ SACLA (Kiyoshi Ueda et al.)

> Theoretical and experimental electron kinetic energy spectra,

T. Tachibana *et al.*, Scientific Reports **5**, 10977 (2015).

XMDYN is part of a start-to-end simulation framework for single-particle imaging at the European XFEL

9fs 30fs without Compton scattering with Compton scattering

nitrogenase iron protein

Red reference sphere has a diameter of 7 Å

C. H. Yoon *et al.*, Sci. Rep. **6**, 24791 (2016).
C. Fortmann-Grote *et al.*, IUCrJ **4**, 560 (2017).

XMDYN using periodic boundary conditions

I3C crystal (5-amino-2,4,6-triiodoisophthalic acid, $C_{_8}H_{_4}I_{_3}NO_{_4}$)

Ionization dynamics in I3C crystal (photon energy 9.7 keV)

DESY.

M. M. Abdullah *et al.*, Phys. Rev. E **96**, 023205 (2017).

Electron thermalization in I3C crystal (250 fs after a 9.7-keV x-ray pulse)

M. M. Abdullah et al., Phys. Rev. E 96, 023205 (2017).

- > no rigorous treatment of electronic structure of highly excited, polyatomic systems
- > no first-principles treatment of chemical bonds; uses force fields, which are optimized only for the neutral ground state
- > no first-principles treatment of influence of molecular environment on decay processes
- > no first-principles treatment of charge transfer
- > no first-principles treatment of electron impact ionization in molecular environment

XMOLECULE

Yajiang Hao

Ludger Inhester

Kota Hanasaki

Sang-Kil Son

- > An ab-initio electronic-structure approach dedicated to ionization dynamics of molecules
- > Self-consistent-field calculation for every electronic configuration formed during interaction with intense XFEL pulse
- > Demonstration of a new ionization enhancement mechanism

Molecular multiple-hole state calculation

> Hartree-Fock-Slater method

$$\left[-\frac{1}{2}\nabla^2 + V_{\text{ext}}(\mathbf{r}) + V_H(\mathbf{r}) + V_X(\mathbf{r})\right]\psi_i(\mathbf{r}) = \varepsilon_i\psi_i(\mathbf{r})$$

> MO represented by linear combination of AO: $\psi_i(\mathbf{r}) = \sum_{\mu} C_{\mu i} \phi_{\mu}(\mathbf{r})$

> Matrix eigenvalue problem: HC = SCE

$$H_{\mu\nu} = \int d^3 r \,\phi_\mu(\mathbf{r}) \left[-\frac{1}{2} \nabla^2 + V_{\text{eff}}(\mathbf{r}) \right] \phi_\nu(\mathbf{r}), \quad S_{\mu\nu} = \int d^3 r \,\phi_\mu(\mathbf{r}) \phi_\nu(\mathbf{r})$$

> AO: numerical solutions of corresponding atomic core-hole states

 $\phi_{nlm}(\mathbf{r}) = \frac{u_{nl}(r)}{r} Y_{lm}(\theta, \varphi)$ calculated using XATOM

> Various numerical techniques employed

- Multicenter integration on a molecular grid built from atomic grids
- Multicenter expansion and multipole expansion in direct Coulomb interaction
- Maximum overlap method to prevent variational collapse

Y. Hao et al., Structural Dynamics **2**, 041707 (2015).

Experimental data taken by Artem Rudenko, Daniel Rolles, and collaborators

A. Rudenko et al., Nature 546, 129 (2017).

A. Rudenko et al., Nature 546, 129 (2017).

Time-resolved ionization dynamics (theory)

A. Rudenko et al., Nature 546, 129 (2017).

Iodobenzene (photon energy 8.3 keV)

Y. Hao et al., Phys. Rev. A 100, 013402 (2019).

Ionization dynamics in iodobenzene (photon energy 8.3 keV, fluence 5×10¹² photons/μm²)

Y. Hao et al., Phys. Rev. A **100**, 013402 (2019).

- Single-shot x-ray imaging of single particles (macromolecules, viruses, ...) requires x-ray intensities that are so high that electronic radiation damage during the x-ray pulse becomes important.
- In order to quantitatively describe the associated radiation damage, dedicated software has been, and is being, developed: XATOM, XMDYN, and XMOLECULE.
- Sub-fs charge transfer underlies a new ionization enhancement mechanism at high x-ray intensity.
- > Calculations on iodomethane and iodobenzene demonstrate that the ionization enhancement increases with the number of light atoms.

http://www.desy.de/~xraypac

