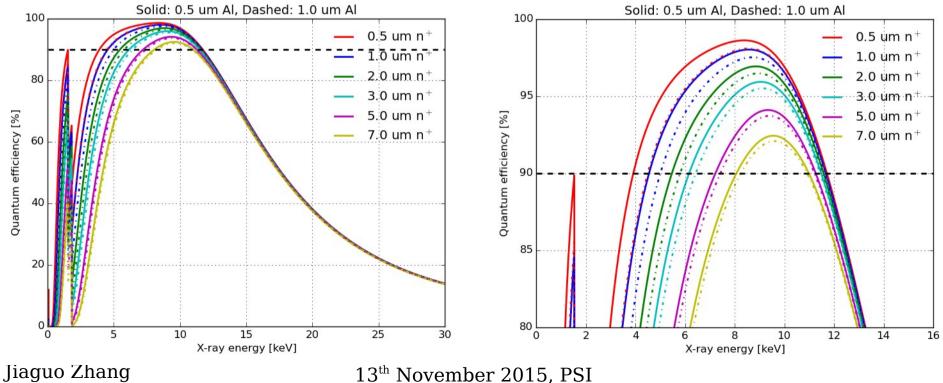
Status of the AGIPD sensors

• Sintef delivery: 2 batches (Feb. + Nov. 2013)

	Batch-1	Batch-2	Sum
Nr. wafers received	20	25	45
Nr. cut wafers	2	2	4
Nr. wafers to PSI	14	11	25
Nr. remaining wafers	1+3	12	16

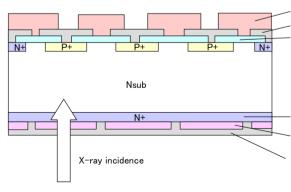
1 wafer \rightarrow 2 sensors

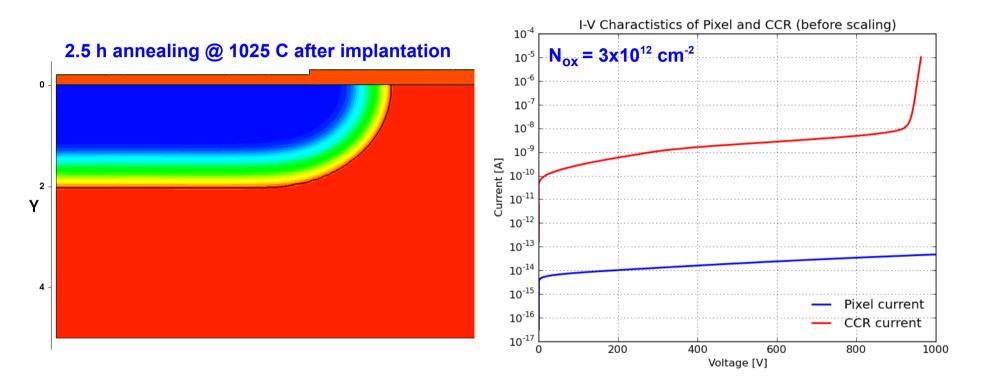

4 deliveries to PSI: 1 + 4 + 9 + 11 (25 wafers in total)

Jiaguo Zhang

13th November 2015, PSI

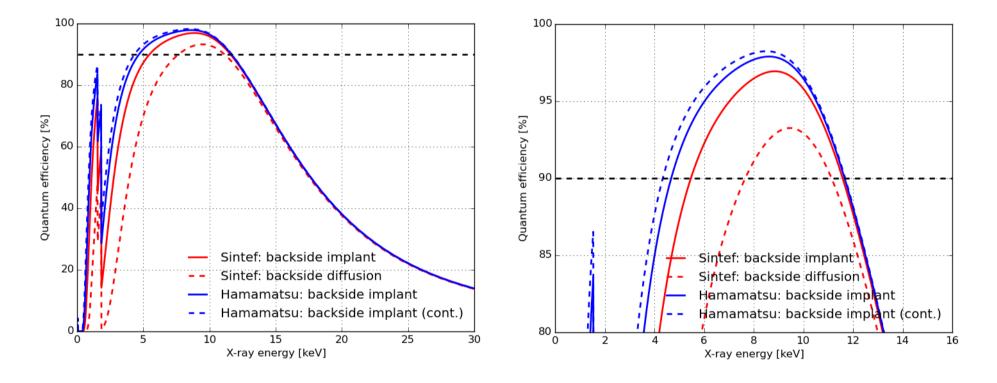
Understanding on previous problems


- Observed problems and proposed solution by Sintef:
 - Dirty surface (C, O, Na, Mg, Al, Si, P, S, Cl, K, Ca, Ti, Cr, As) ← ozone + Di water
 - Metal conjunction and displacement \leftarrow minor event
 - Particles in metalisation \leftarrow detailed inspection + redo metalisation
 - Hot pixels \leftarrow in-house diffusion instead of implantation


• A comparison regarding to AGIPD tech. requirements

Key parameters	Sintef	Hamamatsu	Comment
Oxide thickness	250 nm	250 nm*	* Adaptable from 700 nm down
Pixel implant profile	2.4 um	2 um**	** Breakdown requirement
Entrance window	Implant 2 um Diffuse 5-6 um	1 um	QE

• Both Hamamatsu and Sintef can achieve AGIPD requirements.



• Breakdown with 2 um pixel implant profile

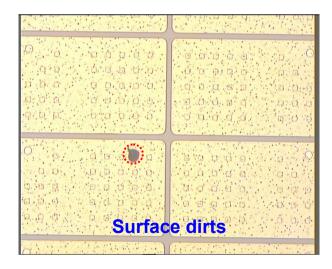
• No breakdown for pixel and CCR up to 900 V with Hamamatsu para.

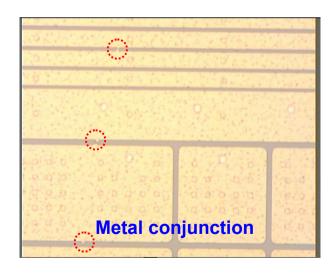
• Quantum efficiency

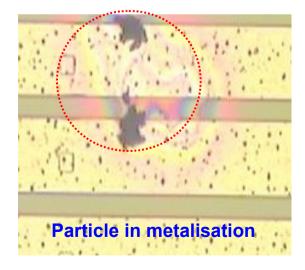
• To achieve a good QE for low-E, backside implantation is essential

Specifications

Parameter	Value	Comment				
dimensions	107,600 μ m $ imes$ 28,000 μ m	+50 μ m for dicing line				
mechanical thickness	$500\pm10~\mu{ m m}$	quantum effeciency (QE)				
flatness (wafer level)	< 30 µm	maximal deviation from a fit plane				
distance last pixel to cut edge	1200 µm	dead space of large area tiled detector				
<i>n</i> -doping/resistivity	3-8 kΩ·cm	depletion voltage, side depletion				
entrance window n^+ -side	< 0.5 µm Al	minimize but no influence on V_{bd}				
entrance window n°-side	$< 2.0 \ \mu \text{m} \ n^+$ -implant					
doping non-uniformity	< 10%	distortion of electric field				
	< 10%	and non-consistent charge collection				
pixel dimensions	$200~\mu\mathrm{m} imes200~\mu\mathrm{m}$	Medipix-compatible				
polarity	p^+-n	hole collection				
coupling	DC					
nominal operating voltage	500 V					
max. particle inside metalisation	< 5 µm	bump-bonding & surface roughness				
max. particle above passivation	< 5 µm	bump-bonding				
dead pixels	< 0.1%	hot pixel + cold pixel				
dead pixel clusters	< 3 clusters					
max. number pixels in cluster	< 5 pixels					
max. number short pixels	< 3 pairs	metal sputtering problem				
electrical properties	at 20 °C in humidity RH <					
breakdown voltage, V _{bd}	> 900 V	after X-ray irradiation to 10 MGy				
breakdown vonage, v _{bd}		1000 V expected without irradiation				
interpixe capacitance, C _{int}	< 200 fF	noise, $ENC(e^{-} r.m.s.) < 80$				
total sensor leakage@500V	50 µA	power consumption				
max. leakage/pixel@500V	50 nA	pixel noise				
max. leakage CCR@500V	20 µ A					
electrical properties at 20 $^{\circ}$ C in humidity RH < 50 %, without irradiation						
total sensor leakage@500V	200 nA	quality Si-wafer				
max. leakage/pixel@500V	20 nA	quality Si-wafer				
max. leakage CCR@500V	200 nA	quality Si-wafer				


New added


Summary

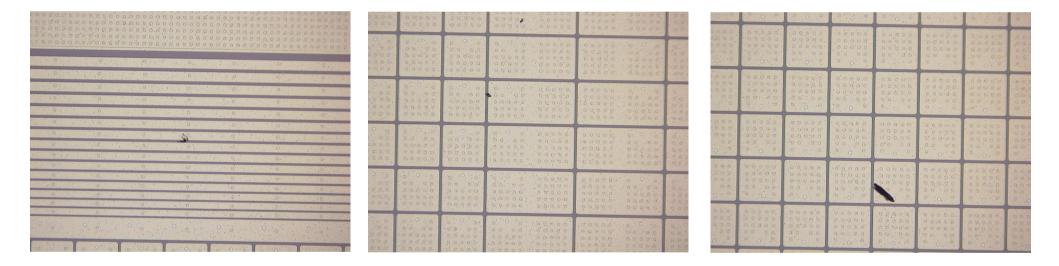

- Sintef actively reacting and proposing solutions
 - Backside diffusion to form n+
 - Visual inspection after metalisation
 - Surface cleaning
- Hamamatsu can be an alternative, but sth. still to be understood:
 - Influence of thin entrance window on breakdown
 - How backside vias arranged in a way results in homogen. QE

Previous problems

- Problems from Batch-1:
 - Dirty surface (surface particles ~ hundreds)
 - Metal conjunction and displacement
 - Particles in metalisation
 - Hot pixels

Jiaguo Zhang

 13^{th} November 2015, PSI

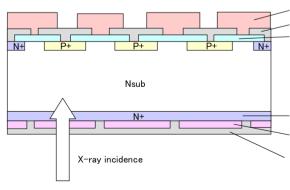

Visual inspection Batch-1 at Sintef

- Wafer-16 of Batch-1
 - Enormous surface particles: a few hundreds
 - Particle analysis: O, C, Mg, Cl, Ar ... (Sintef lab & external contamination)
 - Clean method:

• Comment: Not a problem for bump-bonding but rather the particle in metalisation

Visual inspection Batch-2 at HH

- Inspection of sensors from Batch-2
 - Surface particles: ~ 50-60 per sensor area (10 time less than Batch-1)
 - Tiny pieces: ~ 10-20 um for most of them; 100 um for very little



• Comment: Much better than Batch-1

• A comparison regarding to AGIPD tech. requirements

Key parameters	Sintef	Hamamatsu	Comment
Oxide thickness	250 nm	250 nm*	* Adaptable from 700 nm down
Pixel implant profile	2.4 um	2 um**	** Breakdown simulation has to be done with 2 um
Entrance window	Implant 2 um Diffuse 6 um	1 um	QE

• Both Hamamatsu and Sintef can achieve AGIPD requirements.

