

AGIPD Mechanics

Annette Delfs, FS-DS

Consortium Meeting 12.11.2015

Overview

- Status of engineering work
- Status of parts to be produced/purchased
- Status of mounting
- Status/results of interposer tests
- Summary

Overview

Status of engineering work

- Status of parts to be produced/purchased
- Status of mounting
- Status/results of interposer tests

Summary

Engineering work is finished for most of the parts needed. Exceptions are:

- External Housing / Cooling of External Boards (under progress by ZM1/S. Schneider)
- Interface for distribution of coolant and thermal insulation of cooling tubes (unprocessed)

External Housing / Cooling of External Boards:

- Until end of November:
 - Simulation of air flow in housing, optimizing the set-up (radiators, combination with heat pipes)
 - Detailed design for EMC-protection (already discussed and agreed with Peter Göttlicher)
- December: Detailed design for the cooling
- January: Order parts, bits and pieces

Status of engineering work

12.11.2015

A. Delfs, FS-DS

Development of heat on the boards

Status of engineering work

Air flow in housing (top view)

- vacuum chamber
- ≻ <u>fans</u>
- carrier board
- mother/daughter
- power cables not in simulation yet

Interface for distribution of coolant and thermal insulation of cooling tubes

90°-Swagelok-Fittings can be fixed at any angle.
 Connection from Swagelok to distribution of coolant must be specified.
 Design of thermal insulation

still waiting for specification of coolant distribution.

Overview

Status of engineering work

- Status of parts to be produced/purchased
- Status of mounting
- Status/results of interposer tests

Summary

Except of the forementioned parts all parts are already delivered or in final stage of production. In order as needed that is:

- Cooling blocks, adapters, counter weights, mounting tables + tubes holders, parts for adjustment of cooling blocks
 - Cooling blocks: delivery end of week 47
 - Adapters: ready
 - Counter weights: ready
 - Mounting tables: ready
 - Tube Holders: ready
 - Parts for Adjustment: ready

Vacuum chamber

→ welded, final machining this week, tests and ready for shipping next week, at DESY week 48

➤ Table for vacuum chamber
 → 1 ready, parts for the second table at hand, have to be assembled

- Motion stages and actuators
 ready for 1st 1M, in production for 2nd 1M
- ✓ Vacuum boards
 → ready week 47 for 1st quadrant, 12 in preparation
 → not yet ready for second 1M

➢ Holders and bits and pieces to assemble the quadrants → ready

➢ Device to turn assembled
 quadrants
 → ready

- Device to install quadrants into vacuum chamber
 - \rightarrow ready
- Cooling tube holders
 in production, delivery date mid-November
- Adjustment tools for
 installing the quadrants
 in production, delivery
 date mid-November

- ➢ Flange for vacuum interface board
 → in production, delivery date mid-November
- Rectangular flange with power feedthroughs
 Delivery this week (3 pcs.)

➢ Feedthrough flanges DN 63 and DN 40
 → Delivered last week (4 pcs. each), quality

controlled, to be cleaned

Detector Hood
 in production, delivery date mid-December

Status of parts to be purchased

- ➤ 1x vacuum pump per instrument
 → to be specified by SPB and MID
- ▶ 1x pneumatic angle valve for SPB
 → to be ordered
- ➤ 1x manual angle valve for MID
 → to be ordered

Status of parts to be purchased

- ➤ 2x vacuum gauges PKR 251 per instrument
 → to be ordered
- 1x venting valve per instrument
 to be specified by SPB
- 1x burst disc or pressure relief valve per instrument
 - → to be specified by SPB and MID

Overview

Status of engineering work Status of parts to be produced/purchased Status of mounting

Status/results of interposer tests

Summary

- Mounting of quadrants can start as soon as the cooling blocks are available (end of week 47).
- After delivery and quality check of vacuum chamber, mounting of motion stages and actuators can be done (likely in December).

Overview

Status of engineering work

Status of parts to be produced/purchased

Status of mounting

Status/results of interposer tests

Summary

- Issue: broken sensor modules
- Suspicion:
- > Actions:

- copper interposer is not strong
- enough simulation, tests in lab

Delamination of sensor

LTCC broken

Interposer bended

Simulation = 0.35 µm \rightarrow Forces induced by pulling lever are not an issue!

Main Pin pulls

Tests in lab

- If forces of the pulling lever are not the issue, it must be the plug-in forces of the 500 pin connector.
- Test in lab results in weight of 11.42 kg needed to plug in the connectors.
- On the test-setup weight of 11.42 kg was transferred to a torque of 0.14 Nm (set-up see next slide).

Tests in lab

- Both sides of the interposer fixed to copper block, no pulling lever
- Dial gauges G1 and G3 survey the fixed points, G2 shows bending
- Interposer with LTCC used for test (invisible)

12.11.2015

Tests in lab

bending of interposer by plug-in of connector

Bending at force of 11.42 kg (blue dotted line): $G2 - [(G1 + G3)/2] = 11 \,\mu m$

Tests in lab

Size of bump bonds would be hit at red dotted line. (corresponds to 15 kg)

Why was the sensor module broken then?
 → Pulling lever pushed connector with brutal force into the interposer.

Will this happen again? (and why did it happen?) → No.

- Cooling block of single module did not have correct distance.
- All quadrant-cooling blocks will be checked before mounting to be on the safe side.

Overview

Status of engineering work

- Status of parts to be produced/purchased
- Status of mounting
- Status/results of interposer tests

Summary

Summary

- Status of engineering work:
 - External housing / cooling of boards scheduled to be designed end of 2015; order of parts scheduled for early January.
 - Design from/to Swagelok fitting on cooling tube of detector has tbd with XFEL.
- Status of parts to be produced / purchased:
 - Most parts were/will be delayed by ~3-4 weeks, but no showstoppers so far.
- Status of mounting:
 - Mounting of quadrant starts with delivery of cooling blocks (end of week 47).
 - Mounting of motion stages and actuators into vacuum chamber planned for December.
- Status of interposer tests:
 - Deficiant stability of interposer could be excluded as an issue by simulation and tests.
 - Correct geometry on quadrant cooling blocks will be checked.

Thanks for your attention!

Questions?