AGIPD Software/Firmware Development

- Test Bench Set-Up

Igor Sheviakov Manfred Zimmer Peter Göttlicher Qingqing Xia

DESY Hamburg, 15 Oct, 2013

Outline

Fest bench hardware set-up

Software/FPGA firmware development

- Concept
- □ Software: Command editor
- FPGA firmware

Summary and Outlook

Test Bench Hardware Set-Up

AGIPD Firmware/Software Development: Basic Concept

AGIPD Firmware/Software Development: Approach

Parameterization of firmware operation

- No need recompiling the VHDL code for every new mode of operation
- □ No new VHDL compilation =>no need readjustment of timing, mapping,.....

AGIPD 1.0 Command Set

Memnonic	Bit pattern	Description	Arguments
SETMEM	1000000AAAAAAAAA	Set memory address	AAAAAAAAA = Memory address
ACQMEM	1000001AAAAAAAAA	Acquire image	AAAAAAAAA = Memory address
RPAMPN	1010PPPPPPMMMMMM	(Pre-)Read analogue pixel row, no multiplexing	PPPPPP = (Pre-)Read pixel row no multiplexing MMMMMM = Multiplexed pixel row
·····•			
SWCALV	0110111100000000	Register 31 (calibration and LVDS bias switch)	VVVVVVVV = Register value

AGIPD Software Development: Concept

AGIPD Software Development: GUI Tool

Java Based Command Editor

- Create validated commands
- Create a command sequence
- Operation System independent

purpose only!

For test bench

Input and Output of Command Tables in FPGA Format stored as normal ASCII Files

C\Users\viago\Desktop\AGIPD_FDITOR\AgindWithDelaySequence_1_1.bt	_ 🗆 X	0,SETUPR,136,0,0,0,reset the chip and set DS gain high											
		1,RSDLYW,10,0,0,0,setup the default timings for											
ile Eait		2,RSGATW,11,0,0,0,European-XFEL operation:											
AGIPD 1.0 Command Editor		3,RSDLYR,10,0,0,0,system clock = 100MHz											
		4, RPDLYW, 9, 0, 0, 0, 4.5 MHz bunch rate = 24 clock cycles / bunch											
Edit selected row		5, RPGATW, 13, 0, 0, 0, readout at 33MHz pixel clock											
	Annual Cond	6,RPDLYR,7,0,0,0,timings/clocks are (unlike in an HDL											
Command Arg 0 Arg 1 Arg 2 Arg 3 Comment	Append Cmd	7,CSDLYW,8,0,0,0,description) not explicitly included											
	Insert Cmd	8,CSGATW,12,0,0,0,in the algorithm											
LOOP 62 0 0 0		9.CSDLYR, 5.0.0.0.											
Command Description	Update Cmd	10. DS1DLY, 8. 0. 0.											
	Find Cand	11 DS1GAT 14 0 0 0											
How many	Find Critic	12 psynty 8 0 0											
pos Command Arg0 Arg1 Arg2 Arg3 Comment													
0LOOP62000		14,GIBDD1,S,000,0											
1 PPAMPA 1 1 0 1 mux row and precharge row+1	Delete Cmd	15,GISGAT,17,0,0,0,											
2[ENDLOP 0 0 0 0]\End of loop		16,628014,6,0,0,0,											
3RPNMPA 0 0 63 0mw/astrow	Move Up	17, G2SGAT, 16, 0, 0, 0,											
4 ENDLOP 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Move Down	18,EGSDLY,7,0,0,0,											
SECURE 332 0 0 0/ead amplitude values of all fames		19,EGSGAT,15,0,0,0,											
7RPDMPN 0 0 0 0 0 Interchance first row		20, FXBDLY, 8, 0, 0, 0,											
81 OOP 62 0 0 0		21,TSTDLY,12,0,0,0,for droop loop TSDLY must be bigger that RSTDLY(8)											
9 RPDMPD 1 1 0 1 mux row and precharge row+1	-1	22,TSTGAT,11,0,0,0,bigger than 10											
10 ENDLOP 0 0 0 0 End of loop		23, MUXDIV, 7, 0, 0, 0,											
11 RPDMPD 0 0 63 0 mux last row		24, TIROWM, 255, 0, 0, 0, 0,											
12 ENDLOP 0 0 0 End of loop		25.TICOLM, 255,0,0,0,											
13 GETVAL 128 0 0 0 Get Value from Hardware at Addr. 128	New List	26.VRFCDS, 0.0.0.0. Biases and voltages are set to											
14/TRIGGR 2000 80 69 0 If GetVal(Addr 128) > 2000 Go to 80 (Stop Program)		27. IBNPXB, 128.0.0.0. default values											
15ENDLOP 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Open List	28 UPEPVB 167 0 0 0 default values											
15[STUP	Appand Lint												
17 SETURA 130 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Append List	29, VORDAD, 149, 0, 0, 0											
19RSGATW 11 0 0 DEuropean-XEEL oneration	Insert List												
20/RSDLYR 10 0 0 0/system dock = 100/Hz		31, IBN006, 184, 0, 0, 0,											
21 RPDLYW 9 0 0 04.5MHz bunch rate = 24 clock cycles / bunch		32, 184008, 102, 0, 0, 0,											
22 RPGATW 13 0 0 0 readout at 33MHz pixel clock		33, IENFDA, 160, 0, 0, 0, 0,											
23 RPDLYR 7 0 0 0 timings/clocks are (unlike in an HDL	Save List	34, IBNPRB, 95, 0, 0, 0,											
24 CSDLYW 8 0 0 0 description) not explicitly included	Save List as	35, IBPPRB, 98, 0, 0, 0,											
25 CSGATW 12 0 0 0 in the algorithm	Save List as	36,VCMCHB,148,0,0,0,											
26 CSDLYR 5 0 0 0		37, VCACHB, 93, 0, 0, 0,											
27/DS1DLY 8 0 0 0	-												
-7201070441 1 101 01 01 01													

AGIPD FPGA Firmware Development: System Diagram

Master Control Firmware

AGIPD FPGA Firmware Development: Master Control

- Intermediate test results
 - Test bench sequence prepared

Sequence to initialize detector

Record frames selectively (predefined VETO results) \checkmark

Readout amplitude values of all recorded frames <

- Chipscope-based Hardware Test (without ASIC)
 - PC via Ethernet trigger PowerPC to start initializing Dual Port Block RAM
 - Power PC trigger the master control firmware to start read command sequence from BRAM
 - Master control firmware start sending the command sequence to periphery interface

AGIPD FPGA Firmware Development: Master Control

Examples from Chipscope

□ Record frame: *ACQ_MEM mem_addr* =1000001AAAAAAAA

∽ p_data	8200	8200	8200		82)1	X	8202	2	X	820)3	X	820)4	X	820)5	X	82	06	X	82	07	X	820	8	X	8209	\Box	\Box	320A		820
Data	0	0						1				Л				1					Π			Π	1									
SOB	0	0									6.HV7			1.7			1.1		1	1.14.2			***					4.6.1					<u>Γ</u>	
-bunch_trigger	٥	0		l								0													L								1	
train_trigger	0	0																																

□ Readout sequence: SETMEM mem_addr, RPAMPN 0 0 , RPAMPA (row+1) row,...

Firmware Development Status: ADC Fast Readout

> ADC fast readout in standalone mode

- Optimized clock delay region for IODELAY inside FPGA for this Test bench Set-Up founded
- Two different mother ADC boards (32 Channels) work without individual delay adjustment for each board
- 64 channels parallel ADC readout (mother + daughter boards) succeeded

Firmware Development Status: ADC Fast Readout

Digital output of one ADC Channel 0 (analogue sine wave input)

AGIPD Software/Firmware Development

Summary & Outlook

Summary & Outlook

- PC Software
 - Command Editor: first version is tested by user
 - Further development of application protocol (TCP based) and Interfaces for Monitoring and Control
- **FPGA Firmware**
 - □ Parameterization of firmware operation → Dynamic update and execute user algorithm
 - Master control firmware: Simulation and Chipscope-based hardware tested
 - Reliable Power PC Ethernet communication with PC
 - ADC 64 channels read out implemented
 - Further development of ADC readout chain(sync, write to DDR2, Power PC DMA engine, 1GbE/10GbE back to PC)
 - Further development of Power PC System for dynamic configuration and readout control to simplify the transition to micro controller later

Thank you!

Command List

0,SETUPR,136,0,0,0,reset the chip and set DS gain high 1,RSDLYW,10,0,0,0,setup the default timings for 2,RSGATW, 11, 0, 0, 0, European-XFEL operation: 3,RSDLYR,10,0,0,0,system clock = 100MHz 4, RPDLYW, 9, 0, 0, 0, 4.5MHz bunch rate = 24 clock cycles / bunch 5, RPGATW, 13, 0, 0, 0, readout at 33MHz pixel clock 6, RPDLYR, 7, 0, 0, 0, timings/clocks are (unlike in an HDL 7,CSDLYW, 8,0,0,0, description) not explicitly included 8,CSGATW,12,0,0,0, in the algorithm 9,CSDLYR,5,0,0,0, 10, DS1DLY, 8, 0, 0, 0, 11, DS1GAT, 14, 0, 0, 0, 12,RSTDLY,8,0,0,0, 13,RSTGAT,14,0,0,0, 14,G1SDLY,5,0,0,0, 15,G1SGAT,17,0,0,0, 16,G2SDLY,6,0,0,0, 17,G2SGAT,16,0,0,0, 18, EGSDLY, 7, 0, 0, 0, 19, EGSGAT, 15, 0, 0, 0, 20, PXBDLY, 8, 0, 0, 0, 21, TSTDLY, 12, 0, 0, 0, for droop loop TSDLY must be bigger that RSTDLY(8) 22, TSTGAT, 11, 0, 0, 0, bigger than 10 23, MUXDIV, 7, 0, 0, 0, 24, TIROWM, 255, 0, 0, 0, 25, TICOLM, 255, 0, 0, 0, 26, VRFCDS, 0, 0, 0, 0, Biases and voltages are set to 27, IBNPXB, 128, 0, 0, 0, default values 28, VRFPXB, 167, 0, 0, 0, default values 29, VCAPXB, 193, 0, 0, 0, 30, IBPCOL, 149, 0, 0, 0, 31, IBNCOB, 184, 0, 0, 0, 32, IBPCOB, 102, 0, 0, 0, 33, IBNFDA, 160, 0, 0, 0, 34, IBNPRB, 95, 0, 0, 0, 35, IBPPRB, 98, 0, 0, 0, 36, VCMCHB, 148, 0, 0, 0, 37, VCACHB, 93, 0, 0, 0,

Test Bench Hardware Set Up

> Challenge

Test Bench Hardware Debugging

Vacuum board

Shots found on the power supply connector

