

12th AGIPD Consortium Meeting

Sensor Acceptance and Radiation Hardness of the AGIPD sensor

(for the first delivery of the AGIPD sensors)

Robert Klanner¹, Ioannis Kopsalis^{1,2}, Joern Schwandt¹, and <u>Jiaguo Zhang</u>¹

¹Institute for Experimental Physics, Hamburg University, Hamburg, Germany ²National Technical University of Athens, Greece

J. Zhang, Uni-Hamburg

Outline

- Status of the AGIPD sensor \rightarrow changes since Sept. 2012
- Summary of measurements at Sintef
- Measurements at Hamburg
- Properties of the AGIPD sensor
- Radiation hardness of the AGIPD sensor
 - Irradiation at the beamline P11 of PETRA III with 12 keV X-rays
 - Results
- Summary and future plans

Status of the AGIPD sensor

- 40 sensors (20 wafers) produced by Sintef [Sept. 2012 Jan. 2013]
- J. Zhang @ Sintef for final measurements end of Jan.
- Sensors received in early February, packaged into two shipping boxes
- Information on doping concentration and dielectric received [OK for 1st order simulation]
- 1 wafer with two "bad" AGIPD sensors (V_{bd} < 900 V) has been cut and used for irradiation tests
- Other 19 wafers to be measured

Specification of the AGIPD sensor @ 20°C:

V _{dep}	V_{bd}	l _{pixel} [nA] @ 500 V	l _{CCR} [μΑ] @ 500 V	C _{int} [pF] @ 500 V
< 350 V	> 900 V	< 20 & <mark>50</mark>	< 0.2 & <mark>20</mark>	< 0.5
De de velves a often impediation				

Red: values after irradiation

J. Zhang, Uni-Hamburg

Summary of measurements at Sintef

- all pixels floating
- only CCR current
- before & after "final" annealing (8 hours @ 275°C)
- Cat.1 & Cat.2 are considered good sensors: 70.0%

	Criterion	# sensor	Percent
Cat.1	(before + after) > 900 V	16	40,00%
	(750V <before<900v)+(after>900V</before<900v)+(after>		
Cat.2)	12	30,00%
Cat.3	(before<750V) + (after > 900V)	2	5,00%
Cat.4	after<900V	10	25,00%
Sum		40	100,00%

J. Zhang, Uni-Hamburg

Measurements at Hamburg

To establish measurement procedures:

• One wafer with V_{bd} < 900 V for both sensors before and after "final" annealing

• I-V measurements at Hamburg reproduce results at Sintef

J. Zhang, Uni-Hamburg

Measurements at Hamburg

To establish measurement procedures:

- Visual inspection of the AGIPD sensor
- Sensor flatness measurement

set-up in a flow box in a gray room

- \rightarrow X-Y stepper
- \rightarrow Microscope
- \rightarrow Camera
- → Micrometer indicator

Measurements at Hamburg

To establish measurement procedures:

- Visual inspection: 12,000 pictures (600 µm x 400 µm) per sensor
- Sensor flatness of non-cut wafer: standard deviation of 8 µm from a fit to a plane

 \rightarrow Cross check the sensor flatness after cutting the wafer

J. Zhang, Uni-Hamburg

Full depletion voltage, doping concentration and leakage current

• Determination from a square diode (5 mm x 5 mm) with Sintef-12-GR structure

• $1/C^2$ vs. voltage: $V_{dep} = \sim 95$ V, $N_d = \sim 5.3 \times 10^{11}$ cm⁻³, and $\rho = \sim 7.8$ k Ω •cm

Leakage current: I_{leakage} = 31.2 pA @ 500 V, corresponding to 0.12 nA/cm² (2.4 nA/cm³)
 → dominated by diffusion & bulk-generation current for the non-irradiated sensor

J. Zhang, Uni-Hamburg 9-10 April 2013, AGIPD meeting, PSI-Villigen 8

Flatband voltage and oxide-charge density

• Determined from a circular MOS capacitor (ϕ = 1.5 mm)

- Flatband voltage determined from C/G-V curves: V_{fb} = -0.39 V (C_{fb} = 29.3 pF)
- Oxide-charge density: $N_{ox} = -C_{ox} \cdot (V_{fb} \Phi_{ms})/(q_0 \cdot A_{gate}) = \sim 0 \text{ cm}^{-2}$ (2012: 2.8 x 10¹⁰ cm⁻²)

$$\rightarrow$$
 Extremely low oxide-charge density! Q_{ox}^{eff} negative? $^{*}\Phi_{ms} = -0.42 \text{ V}$

J. Zhang, Uni-Hamburg 9-10 April 2013, AGIPD meeting, PSI-Villigen

1.5 mm

Surface-current density

• Determined from square gate-controlled diodes (GCD): $A_{gate} = 7.1 \times 10^{-3} \text{ cm}^2$

- Surface current @ RT: $I_{surf} = I_{dep} I_{inv} = 16 \text{ pA}$
- Surface-current density @ 20°C: $J_{surf} = I_{surf}/A_{gate} = 1.9 \text{ nA/cm}^2$ (20)

(2012: 8.7 nA/cm²)

 \rightarrow Low surface current for the non-irradiated sensor

J. Zhang, Uni-Hamburg 9-10 April 2013, AGIPD meeting, PSI-Villigen

Pixel current, sensor current and CCR current

• 7x7 <u>inter-connected</u> pixel sensors (all pixels connected) with standard AGIPD pixels and Hamburg-15-GR structure

- Pixel current @ 500 V: 0.42 pA/pixel \rightarrow Current of AGIPD sensor = 28 nA
- CCR current @ 500 V normalised to entire AGIPD sensor: 21 nA
- V_{bd} reduced after cutting due to depletion boundary touching the cut-edge: ~ 850 V

J. Zhang, Uni-Hamburg 9-10 April 2013, AGIPD meeting, PSI-Villigen

Within

specification

Interpixel capacitance from 7x7 ring-connected pixel sensors

• 7x7 <u>ring-connected</u> pixel sensors with standard AGIPD pixels (3 rings of pixels surrounding the central pixel) and Hamburg-15-GR structure

• Interpixel capacitance measured between central pixel and its 8 neighbours:

 $\rightarrow C_{int} @ 500 V = 102 fF$

Within specification < 500 fF

• Measurements confirm TCAD simulation result (98 fF): difference < 4%

J. Zhang, Uni-Hamburg 9-10 April 2013, AGIPD meeting, PSI-Villigen

Irradiation to the AGIPD sensor

Summary of irradiation at the beamline P11 of PETRA III (10, 100, 1000 kGy)

- Beamtime: evening of 27th March, 10:00 am 30th of March 12:00 am 1st of April (2 days and a half)
- Properties of X-ray beam at P11:
 - Energy: 12 keV (tunable 6-12 keV)
 - Photon intensity: max. 1.7 x 10¹³ ph/s
 - Beam spot: 4 mm x 1.2 mm for a defocused beam (min. 60 μm x 250 $\mu m)$
 - Dose rate: max. 7.1 kGy/s for defocused beam
- Samples irradiated by scanning entire X-ray beam:
 - MOS capacitors
 - Gate-controlled diodes
 - Pad diode with Sintef-12-GR structure
 - Three 7x7 inter-connected pixel sensors*
 - Three 7x7 <u>ring-connected</u> pixel sensors* (*with Hamburg-15-GR structure)

Results: C/I-V from MOS and GCD

C-V curves from MOS capacitors and I-V curves from gate-controlled diodes (GCD)

• C-V of MOS: (1) max. voltage shift @ 100 kGy \rightarrow saturation of surface charges

(2) after 10min@80°C, voltage shift reduced by 50%

• I-V of GCD: (1) max. current @ 1 MGy \rightarrow not saturate

(2) fast annealing of surface current after 10min@80°C \rightarrow ~ 35% reduced

Results: N_{ox} & J_{surf} vs. dose

N_{ox} and J_{surf} vs. dose

• N_{ox} saturates at 100 kGy, $N_{ox} \sim 2.1 \text{ x} 10^{12} \text{ cm}^{-2}$

- N_{ox} consistent with the previous results of Sintef-<100>-750 nm SiO₂ (2012) $\rightarrow N_{ox}$ dose not depend on the thickness of SiO₂
- No saturation for J_{surf} up to 1 MGy \rightarrow further irradiations!
- J. Zhang, Uni-Hamburg 9-10 April 2013, AGIPD meeting, PSI-Villigen

Results: V_{bd} vs. dose (Sintef-12-GR)

Breakdown voltage vs. dose from a pad diode with Sintef-12-GR structure

• No breakdown up to 1000 V before irradiation \rightarrow looks good

J. Zhang, Uni-Hamburg

9-10 April 2013, AGIPD meeting, PSI-Villigen

Results: I_{leakage} & V_{bd} vs. dose

Pixel and CCR current vs. dose for 7x7 pixel + Hamburg-15-GR sensor (uniform irrad.)

- After 10min@80°C, pixel current < 0.2 nA/pixel, CCR current < 2 μ A @ 20°C
- At -20°C, pixel and CCR current reduced by 2 orders of magnitude

- Results as irradiated is a factor of 2 higher than after 10min@80°C annealing
- No breakdown up to 900 V! \rightarrow The optimized AGIPD sensor is radiation hard! \rightarrow TCAD simulation "predicted" the results.

J. Zhang, Uni-Hamburg

9-10 April 2013, AGIPD meeting, PSI-Villigen

Within specification

Results: I_{leakage} & V_{bd} vs. dose

Pixel and CCR current vs. dose for 7x7 pixel + Hamburg-15-GR sensor (half irrad.)

- After 10min@80°C, pixel current < 0.1 nA/pixel, CCR current < 1 μ A @ 20°C
- At -20°C, pixel and CCR current reduced by 2 orders of magnitude

- No breakdown up to 900 V! (not a surprise now)
- More realistic case for the AGIPD \rightarrow still works nicely!

J. Zhang, Uni-Hamburg 9-10 April 2013, AGIPD meeting, PSI-Villigen

Within specification

Results: I_{leakage} & V_{bd} vs. dose

Pixel and CCR current vs. dose for 7x7 pixel + Hamburg-15-GR sensor (irrad. with 10 V)

- After 10min@80°C, pixel current < 0.2 nA/pixel, CCR current < 2 μ A @ 20°C
- At -20°C, pixel and CCR current reduced by 2 orders of magnitude

- No breakdown up to 900 V!
- No significant differences between irrad. with 10 V and uniform irradiation, as expected according to the study of gate-voltage dependence of N_{ox} and J_{surf} .
- J. Zhang, Uni-Hamburg 9-10 April 2013, AGIPD meeting, PSI-Villigen

Within specification

Reminder: Nox & Jsurf vs. Eox

Investigations:

- CiS <100> MOS capacitor and Gate-Controlled Diode (~ 350 nm SiO₂ + 50 nm Si₃N₄)
- Electric field in the oxide E_{ox} : ~ (0 0.7) MV/cm [oxide breakdown: ~ 10 MV/cm]

- No strong E_{ox} dependence for $E_{ox} < 0$
- AGIPD p⁺n sensor: $E_{ox} < 0 \rightarrow$ not a problem!

J. Becker, DESY

VERTEX 2012, 16th-21st Sept. 2012, Jeju, Korea

Si

Results: C_{int} vs. dose

Interpixel capacitance vs. dose for 7x7 pixel + Hamburg-15-GR sensor

• Interpixel capacitance C_{int} measured after 10min@80°C annealing

 \rightarrow Measurements confirm simulation results

J. Zhang, Uni-Hamburg 9-10 April 2013, AGIPD meeting, PSI-Villigen

Summary and future plans

Summary:

Measurements for AGIPD sensors

- Measurement procedures established
- Gray room and set-up for visual inspection and flatness measurements ready
- Low oxide charges and surface current
- Sensor breakdown ~ 850 V after cutting \rightarrow solution to be found
- Sensor/pixel current, CCR current and interpixel capacitance within specification
- No breakdown up to 900 V after irradiation
 - \rightarrow The AGIPD sensor optimized by TCAD is radiation hard!
 - \rightarrow Measurements confirm the simulation results.

Future plans:

Improve the breakdown performance for the non-irradiated AGIPD sensor

Deliver first 4 wafers to PSI after a complete set of measurements (end of Apr.)

The other 15 wafers will follow

Ready for 2nd batch of delivery?

J. Zhang, Uni-Hamburg 9-10 April 2013, AGIPD meeting, PSI-Villigen

non-irradiated

irradiated