

11th AGIPD Consortium Meeting

Sensor Acceptance and Quality Control (for the first delivery of the AGIPD sensors)

Robert Klanner¹, Joern Schwandt¹, Jiaguo Zhang¹

¹Institute for Experimental Physics, Hamburg University, Hamburg, Germany

J. Zhang, Uni-Hamburg 26-28 Sept. 2012, AGIPD meeting, Hamburg

Outline

- Final layout of the AGIPD sensor \rightarrow changes since April 2012
- The AGIPD wafer \rightarrow what we have on the wafer
- Acceptance of AGIPD sensors
 - Wafer 1
 - Wafer 2-18
- Measurements for 1st delivery
- Summary

Sensor layout: Pixel

Pixel layout:

Sensor layout: Guard ring

Guard-ring layout:

- Width of guard-ring structure: 1200 µm
- Tracing number assigned

J. Zhang, Uni-Hamburg

Sensor layout: Guard ring

Change of guard-ring layout since April 2012:

• Center of the circus of guard rings: $(0, 0) \rightarrow (20, 20)$

J. Zhang, Uni-Hamburg

Layout of the AGIPD wafer

AGIPD wafer layout:

Delivery and technology agreed

Delivery of AGIPD sensors by SINTEF:

- Wafers to be delivered: 18 (36 sensors in total)
- Expected date of delivery: end of January, 2013

Technology agreed:

- Wafer thickness: 500 µm
- Depth of p^+ implant: 2.4 μm
- Thickness of SiO₂: 250 nm
- Thickness of passivation layer: 500 nm $SiO_2 + 250$ nm SiN PECVD
- Thickness of aluminium (p^+ -side): 1.2 μm
- Bulk resistivity: $7 \text{ k}\Omega \cdot \text{cm} (6.3 \cdot 10^{11} \text{ cm}^{-3})$
- Depth of n^+ implant: 2.0 μm
- Thickness of aluminum (n⁺-side): 0.5 μ m

Effects of resistivity and entrance window

The effects of resistivity and entrance window of sensors produced by SINTEF:

- Bulk resistivity: depletion region not touching cut-edge for 7 k Ω ·cm up to 990 V (J. Schwandt)
- Entrance windows: ~ 1.2 % of 12 keV X-rays converted in (0.5 μ m Al + 2.0 μ m n⁺ implant)

J. Zhang, Uni-Hamburg

Acceptance tasks

First delivery of sensors from SINTEF: 36 AGIPD sensors in total \rightarrow 18 wafers

- <u>Wafer 1</u> \rightarrow cut and fully measure in Hamburg
 - Before cutting: (1) Visual inspection of the full wafer

(2) Mechanical thickness measurement (~ 20 min)

(3) Flatness measurement (~ 30 min)

Structuro	Dese	Magguramont	Time needed [min]			
Structure	Dose	Measurement	Setup	Meas	Analy	
		I-V, [0 V, 500 V]	20	90	40	
7x7	0 Gy	C-V, [0 V, 500 V]	20	60	30	
sensor	100 MGy	I-V, [0 V, 500 V]	20	90	40	
	(half sensor)	C-V, [0 V, 500 V]	20	60	30	
	0 Gy (before cutting)		20	60	20	
AGIPD I	0 Gy (after cutting)	I-V, [U V, 500 V]	20	60	20	
AGIPD 2	0 Gy (before cutting)		20	60	20	
	0 Gy (after cutting)	I-V, [U V, 500 V]	20	60	20	
			= 160	= 540	= 220	
J. Zhang, Uni-Hambu	1rg 26-28 Sept. 201	2, AGIPD meeting, Har	nburg	<u>16 hour</u>	<mark>'S</mark> 9	

Acceptance tasks

First delivery of sensors from SINTEF: 36 AGIPD sensors in total \rightarrow 18 wafers

- <u>Wafer 2-18</u> \rightarrow measure in Hamburg without cutting \rightarrow deliver to PSI for cutting and bonding
 - Flatness measurement on each wafer (~ 30 min/wafer)

Measurements of electrical properties for each wafer

Structuro	Magguramont	Time needed [min]			
Structure	Measurement	Setup	Meas	Analy	
7x7 interconnected sensor	I-V, [0 V, 500 V]	20	90	40	
AGIPD 1	I-V, [0 V, 500 V]	20	60	20	
AGIPD 2	I-V, [0 V, 500 V]	20	60	20	
		= 60	= 210	= 80	

Total consumed time for all wafers = (30+60+210+80) min/wafer x 17 wafers =

J. Zhang, Uni-Hamburg

Detailed measurements

First delivery of sensors from SINTEF: 36 AGIPD sensors in total \rightarrow 18 wafers

• <u>Wafer 1</u> \rightarrow quality-control run

Structuro	Measurement	Extracted parameters	Time needed [min]			
Structure	Measurement	Extracted parameters	Setup	Meas	Analy	
Diada	C-V, [0 V, 250 V]	$N_{eff},\rho,V_{dep},T_{dep}$	20	30	30	
Diode	I-V, [0 V, 250 V]	I _{bulk}	20	30	20	
7x7 inter-connected	I-V, [0 V, 1000 V]	$I_{pixel}, I_{CCR}, V_{bd}$	20	120	40	
sensor	C-V, [0 V, 250 V]	V _{dep}	20	30	30	
7x7 sensor (pixels connected in rings)	C _{int} -V, [0 V, 500 V]	C _{int}	30	60	30	
	I _{int} -V, [0 V, 50 V]	V _{int} ^{bt}	30	10	30	
MOS capacitor	C/G-V, [-10 V, 5 V]	T _{ox} , N _{ox}	20	15	60	
	TDRC	N _{it}	30	720	60	
GCD	I-V [-30 V, 5 V]	J _{surf}	20	15	40	
8 "Hygrometers"	I-t transient	Psurface	8x20	8x60	8x30	
p ⁺ implanted strips	I-V, [-5 V, 5 V]	ρ _{p-implant}	3x20	3x10	3x10	
J. Zhang, Uni-Hamburg	g 26-28 Sept. 2012, AGIPD meeting, Hamburg				11	

Detailed measurements

First delivery of sensors from SINTEF: 36 AGIPD sensors in total \rightarrow 18 wafers

• Wafer $1 \rightarrow$ quality-control run

Structure	Measurement	Extracted perometers	Time needed [min]			
		Extracted parameters	Setup	Meas	Analy	
n ⁺ implanted strips	I-V, [-5 V, 5 V]	ρ _{n-implant}	3x20	3x10	3x10	
Al strips	I-V, [-5 V, 5 V]	ρ _{Al}	3x20	3x10	3x10	
			= 550	=1600	= 670	
				<u></u>		

* The time consuming measurements are for DC-coupled strip sensors, which are not indicated.

- Planned irradiation doses: 0 Gy, 100 kGy, 10 MGy, 1 GGy

"Minimum" time needed for characterization of electrical properties:

<u>47 hours x 4 doses = 188 hours</u>

J. Zhang, Uni-Hamburg 26-28 Sept. 2012, AGIPD meeting, Hamburg

47 hours

Summary

AGIPD sensor:

- Layout of AGIPD sensors and test structures designed
- Layout of AGIPD wafer completed
- Ready for mask production by SINTEF

Sensor acceptance:

- Plans made for 1st delivery of AGIPD sensors:
 - 1 wafer to be cut and fully measured in Hamburg
 - 17 wafer to be test in Hamburg \rightarrow deliver to PSI for cutting and bonding
- Quality-control run for the wafer kept in Hamburg

Topics to be discussed/decided:

- Who makes measurements and analysis?
- Where to irradiate sensors?
- How to store results of measurements? \rightarrow AGIPD database?

Present sensor indico page:

https://indico.desy.de/conferenceDisplay.py?confId=6464

J. Zhang, Uni-Hamburg 26-28 Sept. 2012, AGIPD meeting, Hamburg

Backup

Figure 1: Electrostatic potential for an oxide charge of $N_{ox} = 5 \times 10^{10} \text{ cm}^{-2}$ and resistivity of 5, 8, 10 and 12 k Ω -cm and voltages 990, 770, 660 and 550 V. The white lines indicate the depletion boundaries.

J. Zhang, Uni-Hamburg

Backup

	$3 \text{ k}\Omega \cdot \text{cm}$		$5 \text{ k}\Omega \cdot \text{cm}$		$8 \text{ k}\Omega \cdot \text{cm}$		$12 \text{ k}\Omega \cdot \text{cm}$	
$N_{ox} [cm^{-2}]$	2D (x,y)	2D (r,z)	2D (x,y)	2D (r,z)	2D (x,y)	2D (r,z)	2D (x,y)	2D (r,z)
1×10^{12}	> 1100 V	1060 V	> 1100 V	> 1100 V	> 1100 V	> 1100 V	980 V	> 1100 V
2×10^{12}	1000 V	830 V	1080 V	910 V	950 V	950 V	870 V	980 V
3×10^{12}	1010 V	840 V	> 1100 V	910 V	1000 V	960 V	915 V	985 V

Table 1: Breakdown voltage as function of the oxide charge and bulk resistivity for irradiated sensors