WP2.4 : Interface electronics

Peter Göttlicher

AGIPD consortia meeting PSI, April 4th 2012

Outline

General setup

EMI/Grounding as planned for circuits/layouts/system
 Power supplies

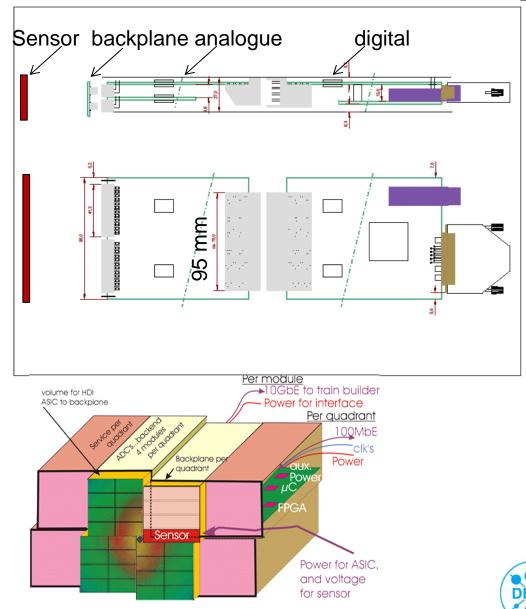
Analogue partDigital part

Backplane

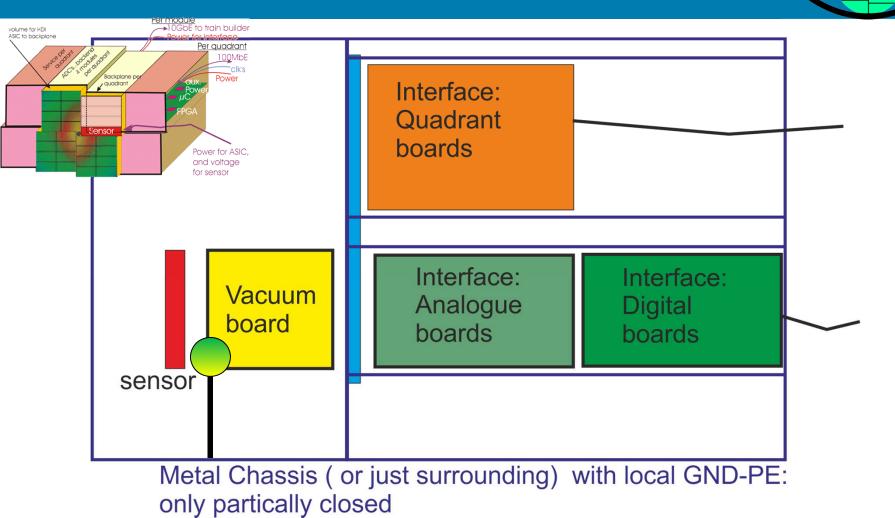
Quadrant

Reject handlingTrain builder activities

Summary/Outlook



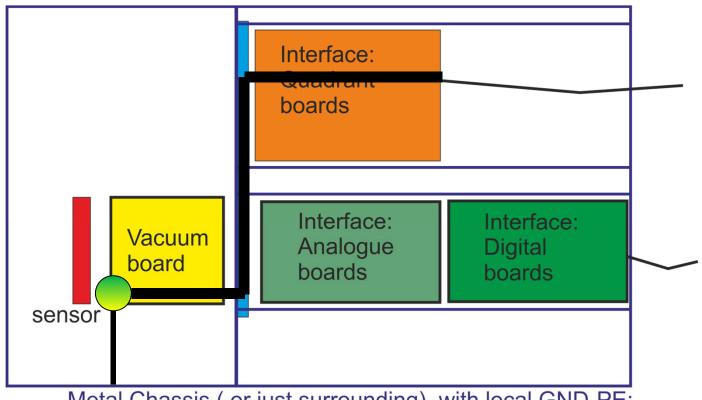
General setup



Interface electronics:

- Two boards for analogue to allow compact analogue line for 64 channels.
- Two boards for digital part to profit from "common" developments.
- Backplane to guide signals to the side. At quadrant level control gets control electronics installed.
- Fit everything behind sensor Allow space for rail at the side.
- From XFEL: C&C Continuous system-clk : 99MHz bunch clk: 4.5MHz with jumps bunch-reject

Grounding/EMI: Task for circuit/layout/system



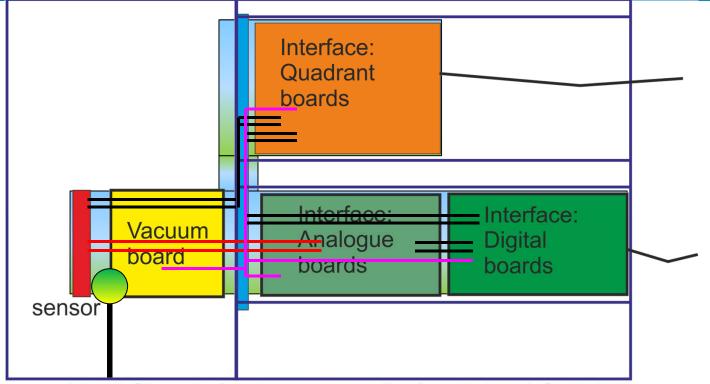
1. Choose main grounding point: At most sensitive part the detector plane

Task for designers of vacuum board

Metal Chassis (or just surrounding) with local GND-PE: only partically closed

2. High power for the ASIC's

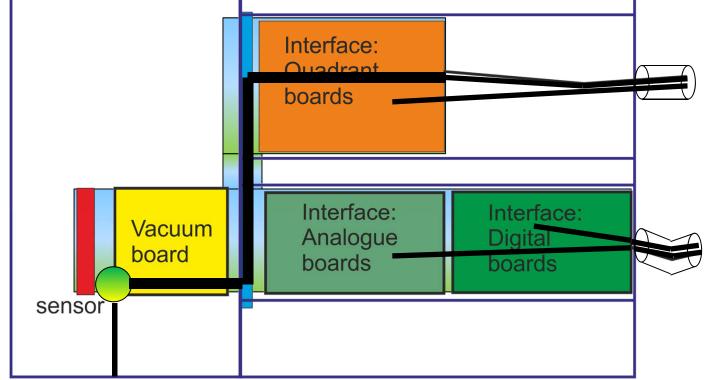
Keep it out of the reference GND: allowing DC-drops of 0.1-0.2V. C-L-C filters at both ends.


Low impedance routing between supply and return

On Vacuum board: Power and ASIC output will mix their areas.

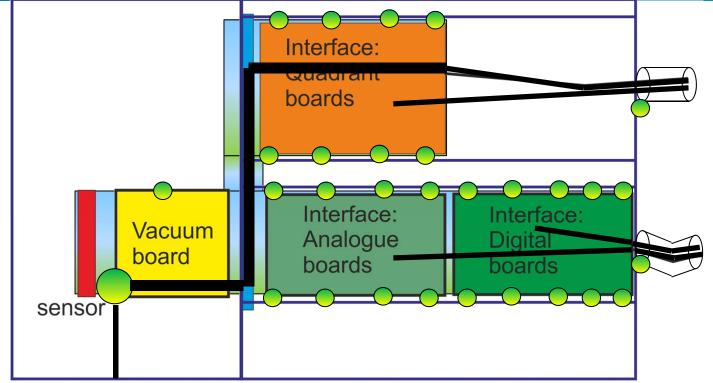
Good filter for HV near ASIC

Metal Chassis (or just surrounding) with local GND-PE: only partically closed


3. Fast signals only differential, slow ramp's with low current single ended

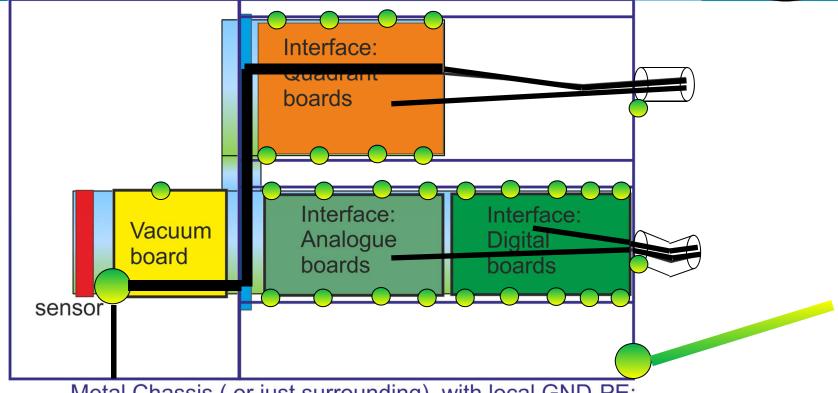
- LVDS from Interface-Quadrant to vacuum board LVDS from Interface-Quadrant to Interface digital LVDS from Interface-digital to Interface-analogue
- JTAG from Interface-Quadrant to Interface-digital (only for boot)
 - All to be routed on top of continuous reference-GND plane

IIII Fast differential analogue passing through power on Vacuum-board III Minimized loops also between each another


Metal Chassis (or just surrounding) with local GND-PE: only partically closed

4. Power for the high consumers Analogue and Digital and ASIC

- brought in from exteranal as floating voltages
- Connected to reference close to consumers
- C-L-C filters at input
- Option to use shielded cables:
 - closed EMI-Zone for higher frequences.
 - but GND-loop for lower frequences.


Metal Chassis (or just surrounding) with local GND-PE: only partically closed

5. Optional jumpers to connect PE and reference GND

- High frequencies anyway have C-couplings everywhere
 - LOW impedance connections are good to guide them back immediately
 - Low frequencies is a risk to pick them up on system level.
 - No risk in a good system, where CHASSIS is free of external currents.
 - Jumpers every few centimeters to rail (rail should be conductive!)
 - Jumpers can also be bridged with capacitors.

Metal Chassis (or just surrounding) with local GND-PE: only partically closed

6. GND connections to external

General: Cable connections re planned for the back panel Getting tehre and only there additional GND-PE-connections would be the general rule.

By that: Low frequency currents are kept out of the detector head.

Power supplies

- Required are floating power supplies
- > XFEL required detailed specifications, not only our consumptions.
- > On my view: That is part of WP 2.5 given away to XFEL.
- I have written them and transferred

Keeping modular and by that flexible to changes from us We don't have a final design tested: Changes of currents/voltages ASIC: - Accounting one positive voltage up to >1.66A per ASIC (Three option see next slide

worst case option 10A supplies and keeping separated,

one channel 6 ASIC's, close to yesterdays 1.63A)

For that option another 16 channels, or are you sure to keep/reduce?

Any voltage below +5V – losses: cable/board/regulator

- A low current negative voltage could be generated at quadrant or adding another 16 power-channels.
- Also the budget was subtracted from AGIPD!
- Getting a generic system for XFEL?
 Purchase rules of XFEL!
- Format seems to be OK for XFEL, values also from our side?

Power requirements

	What electronics group?	How often?	Polarity	Voltage [V]	Current [A]	Comment
	Interface	16	plus	12 - 14	3	
	Interface	16	plus	3 - 5	10	
 3 ASIC options with 1 supply per module or 2 - or 3 (4) 	Interface	16	minus	1 - 5	10	
		16	plus	2 - 5	30, may be 20	One of
	ASIC's	32	plus	2 - 5	16, may be 10	these options
Written down with a view to the commercials within the low ripple systems.		48 <mark>64</mark>	plus	2 - 5	10 <mark>8</mark>	
	Quadrant	4	plus	12 - 14	2	
	Quadrant	4	minus	3 - 6	2	
	Sensors	4 (1 chann	^{plus} el for 4 moc	100 - 1000 Jules in a qua	<5mA drant)	Safety: <12mA

Leaving freedom to get a standard system That table I will fill with realistic estimates from schematics for the spread sheet. Here is with looking a bit to commercial available modules.

Power supplies

Example of a WIENER/ISEG system

Variant with less different channels

Number of channels	Power per channel	polarity	Required voltage range	Required current range
	[W]		[V]	[A]
84 100	50	both	0 - 6	0 - 10
20	50	plus	12 - 14	0 - 3
None	150	plus	0-5	0 - 30
4	12	plus	100 - 1000	0 - 5mA, <12mA

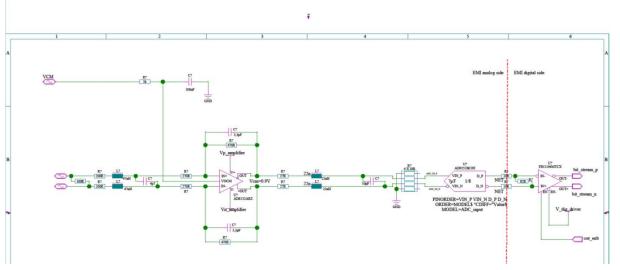
Scalable for single module systems

Requirement to XFEL: 2 times 3kV supplies from 230V, single phase Might depend on the final vendor choise

Power supply

Other issues

- Inlet 230V ?
- Adjustable/monitoring of V and I (1%)
- Current as limit causing a trip
- Floating, voltage limit as nice to have
- Remote sensing as nice to have (10m)
- Low ripple (<30mV)
- Safety: Low voltage system < +-30V


(total difference $<60V_{DC}$ for open operation)

- High voltage < 12mA/channel (only DESY regulation ?)
- Remote control
- 19" Mechanics
- Air stream cooling
- Hardware interlock

Analogue part

ONE amplifier stage for

- Filtering picked up noise
- Converting to ADC requirements
- Differential termination with 100Ω
- Common mode pull with ~ 470Ω to 0.9V
- Assumption was input from ASIC +-1V
 - ... now: to be adjusted to +-0.5V

Taken away:

=> adjustable common mode voltage to which the ASIC-out is pulled

EMI separation

from digital part, R + true LVDS-buffer

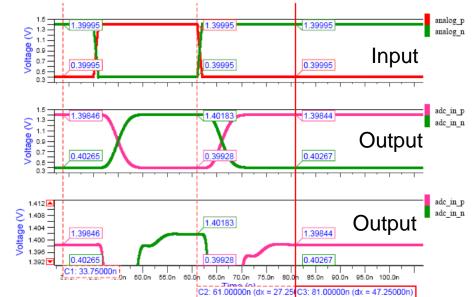
Train cycled operation

Charge storage and current control within powering circuit.

Missing: slow control

Analogue Part

Optimized for 50MS/s


What is the up-to-date rate?

- Containing the storage cell leakage?
- Feasibility of the driver?

Getting slower

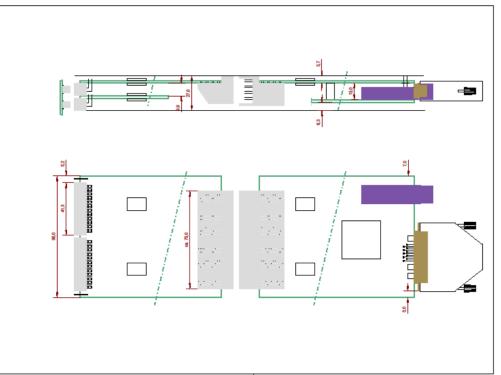
- increases influence of leakage
- allows lower bandwidth for receiver

But that gets frozen into hardware.

Yesterdays talks: To be moved to 40MS/s

ADC sampling clock more complicated to adjust to the early agreements with XFEL/C&C:

99MHz = 22* bunch-clk continuous multiply by 2 divide by 5 and phase-jump well before train. (easier is 33MHz, but 20% more storage time or allowance of storage time uncertainty of 12.5ns)



Digital part

Different requests at DESY-side from X-ray groups for high speed/high input-count interface:

- \Rightarrow Common FPGA mezzanine
- \Rightarrow And user specific carrier

For prototype OK.

Later mezzanine needs small modification, so that everything fits behind sensor.

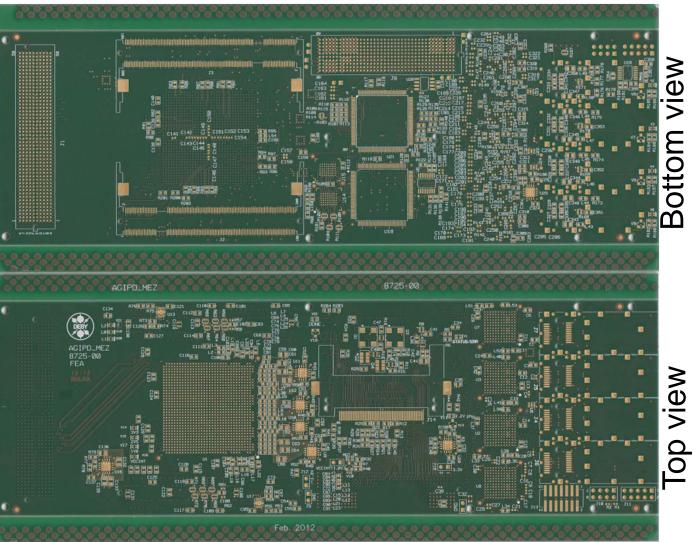
We need only ONE 10GbE.

To be done shortly after first experience.

Digital part

Mezzanine board:

FPGA


2x-DDR2-memory slots SoDIMM

10GbE 4x Later reduced to ONE

JTAG reconfigurable Via Quadrant electronics.

25cm x 8cm

In Production

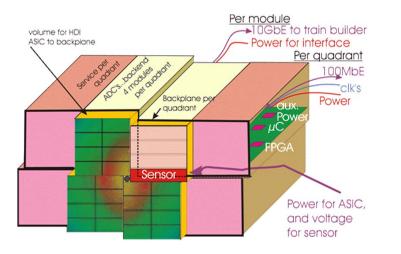
Backplane

- > Companies see no problem to get a backplane vacuum tide
- Vias just to be filled and that is standard
- We will need internal vias to be filled and micro-vias to access on both sides the connectors. "dense space"

Space check: View from the interface side

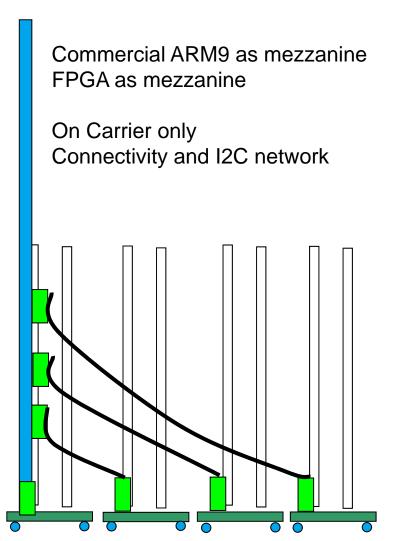
Real work to be started after agreements with vacuum board

Signals transferred via backplane to the ASIC's


- 3 times LVDS-pairs:
 - clk: best the system-clk delivered by XFEL-C&C (continuous 99MHz=22 * bunch clk) switch to digitizing clock for reading
 - data: 16 last bits before strobe are used strobe: Bunch-clk or strobe to accept data
- 16 chip-selects

while running all are selected while boot: I2C register on vacuum board controlled by quadrant μ C.

Quadrant


Most of it is reuse/evaluation for early stage

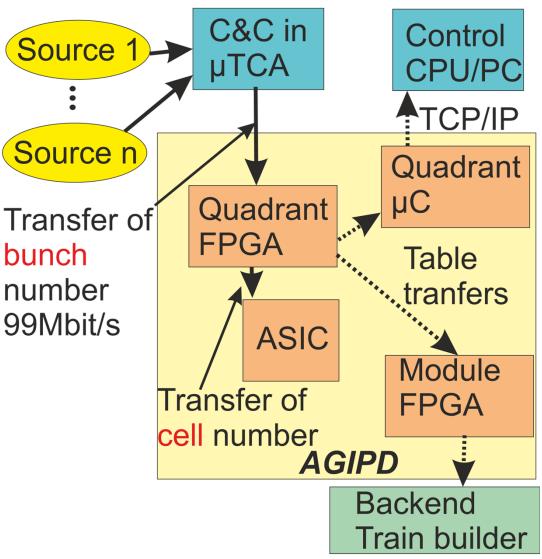
Carrier to be done in close contact with the backplane

To be decided:

- Power for ASIC via quadrant or via connectors directly at vacuum tank.
- Number of lines to ASIC to be verified
- Neg. supply for ASIC?

For long times operation can be done with evaluation etc.

Reject handling


AGIPD Internal:

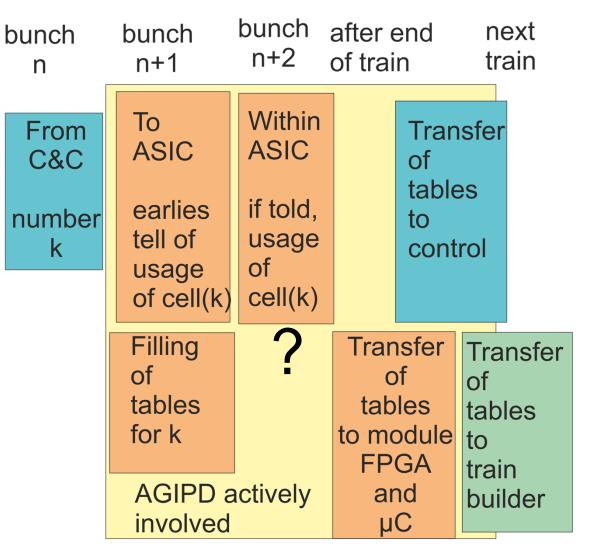
- Defined by need of ASIC

External is generic for XFEL

Specifications are requested by XFEL

- Reject as early as possible
- Random transfer allowed
- Random latency
- Transfer on the agreed cable system-clk (99MHz), bunch-clk(4.5MHz), data-in, data-out with single data rate
- ZERO or ONE rejected bunch-nr per bunch
- LVDS signal, floating coupled.
- After end-of-train more "rejects can be handled", but need of an end-record.
- ("upgrade", not first priority)
- Same cable for other commands as train-start/train-end.

Reject handling



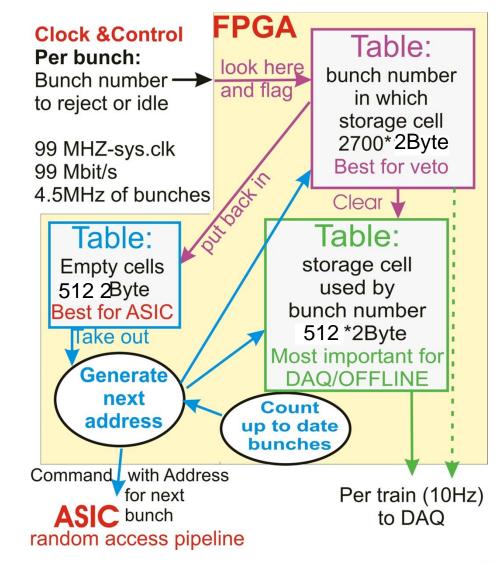
At start of train, always a free cell is available,

Latency:

(only AGIPD internal) Later it might need 1 or 2 bunches to get a cell free

Actions are in parallel, so that it matters only at the end of the train

Reject handling



- > Received from C&C
- Configured to ASIC with a CLK: 99MHz or 198MHz or ? needs

table free_cells

- > Backend needs bunch_nr(cell)
- Internal reject needs cell(bunch_nr) Optional also to backend

Updated to be prepared for More than 256 storage cells.

Train builder activities

Discussions for the definitions of records are started.

- In very first draft
 - Train framing
 - Picture data as everybody
- > But there is more information: I think useful, may be needed later on:
 - Tables of cell usage
 - "Slow data" to get in somewhere: Temperatures, Voltages, Currents,
 - Storage times within cell might get interesting for calibration/corrections: Readout order or time per picture, Cell-nr might be the readout order.

We still readout per picture?

Storage time is a formula between bunch-nr=write time

and readout-time(or cell-ID) = read-time. + offsets(pixel)

It's a fraction of the total volume, but need other types of records.

I have formulated very early.

Are there statements, that we never need it?

Summary and Outlook

- Ditigal part: Mezzanine in production
 Carrier few weeks for layout
- > Analogue part: Few weeks for Mother board (all infrastructure + 32
 - channels) 1 Month layout follow production Daughter board will just follow.
- > Backplane: Agreements needed: mechanics, vacuum board.
- Quadrant: Evaluation board are expected to be sufficient for operation Use Mezzanine FPGA and redign only additional carrier Confidence of settled parameters: Vneg for ASICs, backplane, vacuum board.
- Definitions against XFEL: Reject requests: To be formulated and Power.... Update from our side?

